Spaces:
Runtime error
Runtime error
File size: 8,220 Bytes
7dfe065 a8ede2f 7dfe065 a8ede2f 855cd65 a8ede2f d40f223 fb33b22 855cd65 a8ede2f 855cd65 a8ede2f 7dfe065 a8ede2f 018441b a8ede2f 7dfe065 a8ede2f d40f223 a8ede2f 018441b 7dfe065 855cd65 7dfe065 669da77 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 f69201c a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 7f2fc59 855cd65 7f2fc59 a8ede2f 7f2fc59 81b5773 7f2fc59 38a6e1d 7f2fc59 81b5773 7f2fc59 81b5773 a8ede2f 7f2fc59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
#!/usr/bin/env python
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
LLM_BENCHMARKS_DETAILS,
FAQ_TEXT,
TITLE
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.utils import get_dataset_summary_table
def ui_snapshot_download(repo_id, local_dir, repo_type, tqdm_class, etag_timeout):
try:
print(local_dir)
snapshot_download(repo_id=repo_id, local_dir=local_dir, repo_type=repo_type, tqdm_class=tqdm_class, etag_timeout=etag_timeout)
except Exception as e:
restart_space()
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
def init_space():
dataset_df = get_dataset_summary_table(file_path='blog/Hallucination-Leaderboard-Summary.csv')
import socket
if socket.gethostname() not in {'neuromancer'}:
ui_snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30)
ui_snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30)
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
return dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
leaderboard_df = original_df.copy()
# Searching and filtering
def update_table(hidden_df: pd.DataFrame,
columns: list,
type_query: list,
precision_query: list,
size_query: list,
query: str):
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
# always_here_cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
dummy_col = [AutoEvalColumn.dummy.name]
# We use COLS to maintain sorting
filtered_df = df[
# always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame):
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
subset = [AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
filtered_df = filtered_df.drop_duplicates(subset=subset)
return filtered_df
def filter_models(df: pd.DataFrame,
type_query: list,
size_query: list,
precision_query: list) -> pd.DataFrame:
# Show all models
filtered_df = df
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
# triggered only once at startup => read query parameter if it exists
def load_query(request: gr.Request):
query = request.query_params.get("query") or ""
return query
leaderboard_df = filter_models(
df=leaderboard_df,
type_query=[t.to_str(" : ") for t in ModelType],
size_query=list(NUMERIC_INTERVALS.keys()),
precision_query=[i.value.name for i in Precision],
)
import unicodedata
def is_valid_unicode(char):
try:
unicodedata.name(char)
return True # Valid Unicode character
except ValueError:
return False # Invalid Unicode character
def remove_invalid_unicode(input_string):
if isinstance(input_string, str):
valid_chars = [char for char in input_string if is_valid_unicode(char)]
return ''.join(valid_chars)
else:
return input_string # Return non-string values as is
dummy1 = gr.Textbox(visible=False)
hidden_leaderboard_table_for_search = gr.components.Dataframe(
headers=COLS,
datatype=TYPES,
visible=False,
line_breaks=False,
interactive=False
)
def display(x, y):
# Assuming df is your DataFrame
for column in leaderboard_df.columns:
if leaderboard_df[column].dtype == 'object':
leaderboard_df[column] = leaderboard_df[column].apply(remove_invalid_unicode)
subset_df = leaderboard_df[COLS]
return subset_df
INTRODUCTION_TEXT = """
This is a copied space from LLM Trustworthy Leaderboard. Instead of displaying
the results as table this space was modified to simply provides a gradio API interface.
Using the following python script below, users can access the full leaderboard data easily.
Python on how to access the data:
```python
# Import dependencies
from gradio_client import Client
# Initialize the Gradio client with the API URL
client = Client("https://rodrigomasini-data-only-hallucination-leaderboard.hf.space/")
try:
# Perform the API call
response = client.predict("","", api_name='/predict')
# Check if response it's directly accessible
if len(response) > 0:
print("Response received!")
headers = response.get('headers', [])
data = response.get('data', [])
print(headers)
# Remove commenst if you want to download the dataset and save in csv format
# Specify the path to your CSV file
#csv_file_path = 'llm-trustworthy-benchmark.csv'
# Open the CSV file for writing
#with open(csv_file_path, mode='w', newline='', encoding='utf-8') as file:
# writer = csv.writer(file)
# Write the headers
# writer.writerow(headers)
# Write the data
# for row in data:
# writer.writerow(row)
#print(f"Results saved to {csv_file_path}")
# If the above line prints a string that looks like JSON, you can parse it with json.loads(response)
# Otherwise, you might need to adjust based on the actual structure of `response`
except Exception as e:
print(f"An error occurred: {e}")
```
"""
interface = gr.Interface(
fn=display,
inputs=[gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text"), dummy1],
outputs=[hidden_leaderboard_table_for_search]
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
interface.launch() |