pminervini commited on
Commit
10f3d68
·
1 Parent(s): 06827ad
cli/halueval-cli.py CHANGED
@@ -46,7 +46,7 @@ def main():
46
 
47
  for task in TASKS_HARNESS:
48
  print(f"Selected Tasks: [{task}]")
49
- results = evaluator.simple_evaluate(model="hf", model_args=eval_request.get_model_args(), tasks=[task.benchmark], num_fewshot=1,
50
  batch_size=1, device="mps", use_cache=None, limit=10, write_out=True)
51
  print('AAA', results["results"])
52
 
 
46
 
47
  for task in TASKS_HARNESS:
48
  print(f"Selected Tasks: [{task}]")
49
+ results = evaluator.simple_evaluate(model="hf", model_args=eval_request.get_model_args(), tasks=[task.benchmark], num_fewshot=4,
50
  batch_size=1, device="mps", use_cache=None, limit=10, write_out=True)
51
  print('AAA', results["results"])
52
 
requirements.txt CHANGED
@@ -25,3 +25,4 @@ sacrebleu
25
  cchardet
26
  rouge_score
27
  bert-score
 
 
25
  cchardet
26
  rouge_score
27
  bert-score
28
+ evaluate
src/backend/tasks/xsum/task.py CHANGED
@@ -61,6 +61,7 @@ class XSum(Task):
61
  super().__init__(data_dir=data_dir, cache_dir=cache_dir, download_mode=download_mode, config=config)
62
  self.factkb_tokenizer = None
63
  self.factkb_model = None
 
64
 
65
  def maybe_init_factkb(self):
66
  if self.factkb_tokenizer is None or self.factkb_model is None:
@@ -68,6 +69,11 @@ class XSum(Task):
68
  self.factkb_tokenizer = AutoTokenizer.from_pretrained("roberta-base", padding="max_length", truncation=True)
69
  self.factkb_model = AutoModelForSequenceClassification.from_pretrained("bunsenfeng/FactKB", num_labels=2, device_map="auto")
70
 
 
 
 
 
 
71
  def has_training_docs(self):
72
  return True
73
 
@@ -126,6 +132,8 @@ class XSum(Task):
126
  completion = results[0]
127
 
128
  document = doc["document"]
 
 
129
  true_refs = [doc["summary"]]
130
  all_refs = true_refs
131
 
@@ -144,11 +152,17 @@ class XSum(Task):
144
  factkb_logits = self.factkb_model(**factkb_tokens).logits
145
  factkb_res = torch.softmax(factkb_logits, dim=1)
146
 
 
 
 
147
  res = {
148
  "rouge1": rouge1_scores[0],
149
  "rouge2": rouge2_scores[0],
150
  "rougeL": rougeL_scores[0],
151
- "factKB": float(factkb_res[0][1])
 
 
 
152
  }
153
 
154
  # breakpoint()
 
61
  super().__init__(data_dir=data_dir, cache_dir=cache_dir, download_mode=download_mode, config=config)
62
  self.factkb_tokenizer = None
63
  self.factkb_model = None
64
+ self.bert_score = None
65
 
66
  def maybe_init_factkb(self):
67
  if self.factkb_tokenizer is None or self.factkb_model is None:
 
69
  self.factkb_tokenizer = AutoTokenizer.from_pretrained("roberta-base", padding="max_length", truncation=True)
70
  self.factkb_model = AutoModelForSequenceClassification.from_pretrained("bunsenfeng/FactKB", num_labels=2, device_map="auto")
71
 
72
+ def maybe_init_bertscore(self):
73
+ if self.bert_score is None:
74
+ from evaluate import load
75
+ self.bert_score = load("bertscore")
76
+
77
  def has_training_docs(self):
78
  return True
79
 
 
132
  completion = results[0]
133
 
134
  document = doc["document"]
135
+ gold_summary = doc["summary"]
136
+
137
  true_refs = [doc["summary"]]
138
  all_refs = true_refs
139
 
 
152
  factkb_logits = self.factkb_model(**factkb_tokens).logits
153
  factkb_res = torch.softmax(factkb_logits, dim=1)
154
 
155
+ self.maybe_init_factkb()
156
+ bert_score_res = self.bert_score.compute(predictions=[completion], references=[gold_summary], lang="en")
157
+
158
  res = {
159
  "rouge1": rouge1_scores[0],
160
  "rouge2": rouge2_scores[0],
161
  "rougeL": rougeL_scores[0],
162
+ "factKB": float(factkb_res[0][1]),
163
+ "bertscore_precision": float(bert_score_res["precision"][0]),
164
+ "bertscore_recall": float(bert_score_res["recall"][0]),
165
+ "bertscore_f1": float(bert_score_res["f1"][0]),
166
  }
167
 
168
  # breakpoint()