Spaces:
Runtime error
Runtime error
pminervini
commited on
Commit
·
19d09c1
1
Parent(s):
a0d8a50
update
Browse files
src/backend/tasks/cnndm/__pycache__/task.cpython-39.pyc
DELETED
Binary file (4.27 kB)
|
|
src/backend/tasks/cnndm/__pycache__/utils.cpython-39.pyc
DELETED
Binary file (2.81 kB)
|
|
src/backend/tasks/xsum/task.py
CHANGED
@@ -3,6 +3,7 @@ from lm_eval.api.instance import Instance
|
|
3 |
from lm_eval.api.registry import register_task
|
4 |
from lm_eval.api.metrics import mean
|
5 |
|
|
|
6 |
import sacrebleu
|
7 |
from rouge_score import rouge_scorer, scoring
|
8 |
|
@@ -61,11 +62,11 @@ class XSum(Task):
|
|
61 |
self.factkb_tokenizer = None
|
62 |
self.factkb_model = None
|
63 |
|
64 |
-
def
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
def has_training_docs(self):
|
71 |
return True
|
@@ -114,7 +115,8 @@ class XSum(Task):
|
|
114 |
Instance(
|
115 |
request_type="generate_until",
|
116 |
doc=doc,
|
117 |
-
arguments=(ctx, {"until": ["\n", "."]}),
|
|
|
118 |
idx=0,
|
119 |
**kwargs
|
120 |
)
|
@@ -123,28 +125,34 @@ class XSum(Task):
|
|
123 |
def process_results(self, doc, results):
|
124 |
completion = results[0]
|
125 |
|
126 |
-
|
127 |
true_refs = [doc["summary"]]
|
128 |
all_refs = true_refs
|
129 |
|
130 |
# ROUGE-N
|
131 |
rouge_scores = [rouge([ref], [completion]) for ref in all_refs]
|
132 |
-
|
133 |
# ROUGE-1
|
134 |
rouge1_scores = [score["rouge1"] for score in rouge_scores]
|
135 |
-
|
136 |
# ROUGE-2
|
137 |
rouge2_scores = [score["rouge2"] for score in rouge_scores]
|
138 |
-
|
139 |
# ROUGE-L
|
140 |
rougeL_scores = [score["rougeLsum"] for score in rouge_scores]
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
res = {
|
143 |
"rouge1": rouge1_scores[0],
|
144 |
"rouge2": rouge2_scores[0],
|
145 |
"rougeL": rougeL_scores[0],
|
|
|
146 |
}
|
147 |
|
|
|
|
|
148 |
return res
|
149 |
|
150 |
def aggregation(self):
|
@@ -153,7 +161,7 @@ class XSum(Task):
|
|
153 |
A dictionary where keys are the names of submetrics and values are
|
154 |
functions that aggregate a list of metrics
|
155 |
"""
|
156 |
-
return {k: mean for k in ["rouge1", "rouge2", "rougeL"]}
|
157 |
|
158 |
def higher_is_better(self):
|
159 |
"""
|
@@ -161,4 +169,4 @@ class XSum(Task):
|
|
161 |
A dictionary where keys are the names of submetrics and values are
|
162 |
whether a higher value of the submetric is better
|
163 |
"""
|
164 |
-
return {k: True for k in ["rouge1", "rouge2", "rougeL"]}
|
|
|
3 |
from lm_eval.api.registry import register_task
|
4 |
from lm_eval.api.metrics import mean
|
5 |
|
6 |
+
import torch
|
7 |
import sacrebleu
|
8 |
from rouge_score import rouge_scorer, scoring
|
9 |
|
|
|
62 |
self.factkb_tokenizer = None
|
63 |
self.factkb_model = None
|
64 |
|
65 |
+
def maybe_init_factkb(self):
|
66 |
+
if self.factkb_tokenizer is None or self.factkb_model is None:
|
67 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
68 |
+
self.factkb_tokenizer = AutoTokenizer.from_pretrained("roberta-base", padding="max_length", truncation=True)
|
69 |
+
self.factkb_model = AutoModelForSequenceClassification.from_pretrained("bunsenfeng/FactKB", num_labels=2, device_map="auto")
|
70 |
|
71 |
def has_training_docs(self):
|
72 |
return True
|
|
|
115 |
Instance(
|
116 |
request_type="generate_until",
|
117 |
doc=doc,
|
118 |
+
# arguments=(ctx, {"until": ["\n", "."]}),
|
119 |
+
arguments=(ctx, {"until": ["\n"]}),
|
120 |
idx=0,
|
121 |
**kwargs
|
122 |
)
|
|
|
125 |
def process_results(self, doc, results):
|
126 |
completion = results[0]
|
127 |
|
128 |
+
document = doc["document"]
|
129 |
true_refs = [doc["summary"]]
|
130 |
all_refs = true_refs
|
131 |
|
132 |
# ROUGE-N
|
133 |
rouge_scores = [rouge([ref], [completion]) for ref in all_refs]
|
|
|
134 |
# ROUGE-1
|
135 |
rouge1_scores = [score["rouge1"] for score in rouge_scores]
|
|
|
136 |
# ROUGE-2
|
137 |
rouge2_scores = [score["rouge2"] for score in rouge_scores]
|
|
|
138 |
# ROUGE-L
|
139 |
rougeL_scores = [score["rougeLsum"] for score in rouge_scores]
|
140 |
|
141 |
+
self.maybe_init_factkb()
|
142 |
+
input_factkb = [[completion, document]]
|
143 |
+
factkb_tokens = self.factkb_tokenizer(input_factkb, return_tensors="pt", padding="max_length", truncation=True).to(self.factkb_model.device)
|
144 |
+
factkb_logits = self.factkb_model(**factkb_tokens).logits
|
145 |
+
factkb_res = torch.softmax(factkb_logits, dim=1)
|
146 |
+
|
147 |
res = {
|
148 |
"rouge1": rouge1_scores[0],
|
149 |
"rouge2": rouge2_scores[0],
|
150 |
"rougeL": rougeL_scores[0],
|
151 |
+
"factKB": float(factkb_res[0][1])
|
152 |
}
|
153 |
|
154 |
+
# breakpoint()
|
155 |
+
|
156 |
return res
|
157 |
|
158 |
def aggregation(self):
|
|
|
161 |
A dictionary where keys are the names of submetrics and values are
|
162 |
functions that aggregate a list of metrics
|
163 |
"""
|
164 |
+
return {k: mean for k in ["rouge1", "rouge2", "rougeL", "factKB"]}
|
165 |
|
166 |
def higher_is_better(self):
|
167 |
"""
|
|
|
169 |
A dictionary where keys are the names of submetrics and values are
|
170 |
whether a higher value of the submetric is better
|
171 |
"""
|
172 |
+
return {k: True for k in ["rouge1", "rouge2", "rougeL", "factKB"]}
|