Spaces:
Runtime error
Runtime error
pminervini
commited on
Commit
·
d489aeb
1
Parent(s):
83d660d
update
Browse files- app.py +0 -0
- backend-cli.py +2 -0
- src/backend/manage_requests.py +2 -1
- src/submission/check_validity.py +7 -3
- submit-cli.py +152 -0
app.py
CHANGED
File without changes
|
backend-cli.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import json
|
3 |
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
import os
|
4 |
import json
|
5 |
|
src/backend/manage_requests.py
CHANGED
@@ -82,7 +82,8 @@ def get_eval_requests(job_status: list, local_dir: str, hf_repo: str) -> list[Ev
|
|
82 |
# breakpoint()
|
83 |
data["json_filepath"] = json_filepath
|
84 |
|
85 |
-
|
|
|
86 |
|
87 |
eval_request = EvalRequest(**data)
|
88 |
eval_requests.append(eval_request)
|
|
|
82 |
# breakpoint()
|
83 |
data["json_filepath"] = json_filepath
|
84 |
|
85 |
+
if 'job_id' in data:
|
86 |
+
del data['job_id']
|
87 |
|
88 |
eval_request = EvalRequest(**data)
|
89 |
eval_requests.append(eval_request)
|
src/submission/check_validity.py
CHANGED
@@ -41,14 +41,17 @@ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_rem
|
|
41 |
try:
|
42 |
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
43 |
if test_tokenizer:
|
44 |
-
tokenizer_config = get_tokenizer_config(model_name)
|
|
|
45 |
if tokenizer_config is not None:
|
46 |
tokenizer_class_candidate = tokenizer_config.get("tokenizer_class", None)
|
47 |
else:
|
48 |
-
tokenizer_class_candidate = config.tokenizer_class
|
49 |
|
|
|
|
|
|
|
50 |
|
51 |
-
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
|
52 |
if tokenizer_class is None:
|
53 |
return (
|
54 |
False,
|
@@ -65,6 +68,7 @@ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_rem
|
|
65 |
)
|
66 |
|
67 |
except Exception as e:
|
|
|
68 |
return False, "was not found on hub!", None
|
69 |
|
70 |
|
|
|
41 |
try:
|
42 |
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
43 |
if test_tokenizer:
|
44 |
+
tokenizer_config = get_tokenizer_config(model_name)
|
45 |
+
|
46 |
if tokenizer_config is not None:
|
47 |
tokenizer_class_candidate = tokenizer_config.get("tokenizer_class", None)
|
48 |
else:
|
49 |
+
tokenizer_class_candidate = config.tokenizer_class
|
50 |
|
51 |
+
tokenizer_class = None
|
52 |
+
if tokenizer_class_candidate is not None:
|
53 |
+
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
|
54 |
|
|
|
55 |
if tokenizer_class is None:
|
56 |
return (
|
57 |
False,
|
|
|
68 |
)
|
69 |
|
70 |
except Exception as e:
|
71 |
+
print('XXX', e)
|
72 |
return False, "was not found on hub!", None
|
73 |
|
74 |
|
submit-cli.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
from datetime import datetime, timezone
|
7 |
+
|
8 |
+
from src.envs import API, EVAL_REQUESTS_PATH, H4_TOKEN, QUEUE_REPO
|
9 |
+
from src.submission.check_validity import already_submitted_models, check_model_card, get_model_size, is_model_on_hub
|
10 |
+
|
11 |
+
|
12 |
+
def add_new_eval(model: str, base_model: str, revision: str, precision: str, private: bool, weight_type: str, model_type: str):
|
13 |
+
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
14 |
+
|
15 |
+
user_name = ""
|
16 |
+
model_path = model
|
17 |
+
if "/" in model:
|
18 |
+
tokens = model.split("/")
|
19 |
+
user_name = tokens[0]
|
20 |
+
model_path = tokens[1]
|
21 |
+
|
22 |
+
precision = precision.split(" ")[0]
|
23 |
+
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
24 |
+
|
25 |
+
if model_type is None or model_type == "":
|
26 |
+
return print("Please select a model type.")
|
27 |
+
|
28 |
+
# Does the model actually exist?
|
29 |
+
if revision == "":
|
30 |
+
revision = "main"
|
31 |
+
|
32 |
+
# Is the model on the hub?
|
33 |
+
if weight_type in ["Delta", "Adapter"]:
|
34 |
+
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=H4_TOKEN, test_tokenizer=True)
|
35 |
+
if not base_model_on_hub:
|
36 |
+
print(f'Base model "{base_model}" {error}')
|
37 |
+
return
|
38 |
+
|
39 |
+
if not weight_type == "Adapter":
|
40 |
+
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
|
41 |
+
if not model_on_hub:
|
42 |
+
print(f'Model "{model}" {error}')
|
43 |
+
return
|
44 |
+
|
45 |
+
# Is the model info correctly filled?
|
46 |
+
try:
|
47 |
+
model_info = API.model_info(repo_id=model, revision=revision)
|
48 |
+
except Exception:
|
49 |
+
print("Could not get your model information. Please fill it up properly.")
|
50 |
+
return
|
51 |
+
|
52 |
+
model_size = get_model_size(model_info=model_info, precision=precision)
|
53 |
+
|
54 |
+
license = 'none'
|
55 |
+
try:
|
56 |
+
license = model_info.cardData["license"]
|
57 |
+
except Exception:
|
58 |
+
print("Please select a license for your model")
|
59 |
+
# return
|
60 |
+
|
61 |
+
# modelcard_OK, error_msg = check_model_card(model)
|
62 |
+
# if not modelcard_OK:
|
63 |
+
# print(error_msg)
|
64 |
+
# return
|
65 |
+
|
66 |
+
# Seems good, creating the eval
|
67 |
+
print("Adding new eval")
|
68 |
+
|
69 |
+
eval_entry = {
|
70 |
+
"model": model,
|
71 |
+
"base_model": base_model,
|
72 |
+
"revision": revision,
|
73 |
+
"private": private,
|
74 |
+
"precision": precision,
|
75 |
+
"weight_type": weight_type,
|
76 |
+
"status": "PENDING",
|
77 |
+
"submitted_time": current_time,
|
78 |
+
"model_type": model_type,
|
79 |
+
"likes": model_info.likes,
|
80 |
+
"params": model_size,
|
81 |
+
"license": license,
|
82 |
+
}
|
83 |
+
|
84 |
+
# Check for duplicate submission
|
85 |
+
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
86 |
+
print("This model has been already submitted.")
|
87 |
+
return
|
88 |
+
|
89 |
+
print("Creating eval file")
|
90 |
+
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
91 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
92 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
|
93 |
+
|
94 |
+
with open(out_path, "w") as f:
|
95 |
+
f.write(json.dumps(eval_entry))
|
96 |
+
|
97 |
+
print("Uploading eval file")
|
98 |
+
API.upload_file(path_or_fileobj=out_path, path_in_repo=out_path.split("eval-queue/")[1],
|
99 |
+
repo_id=QUEUE_REPO, repo_type="dataset", commit_message=f"Add {model} to eval queue")
|
100 |
+
|
101 |
+
# Remove the local file
|
102 |
+
os.remove(out_path)
|
103 |
+
|
104 |
+
print("Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list.")
|
105 |
+
return
|
106 |
+
|
107 |
+
|
108 |
+
def main():
|
109 |
+
from huggingface_hub import HfApi
|
110 |
+
|
111 |
+
api = HfApi()
|
112 |
+
model_lst = api.list_models()
|
113 |
+
|
114 |
+
model_lst = [m for m in model_lst]
|
115 |
+
|
116 |
+
def custom_filter(m) -> bool:
|
117 |
+
return m.pipeline_tag in {'text-generation'} and 'en' in m.tags and m.private is False
|
118 |
+
|
119 |
+
filtered_model_lst = sorted([m for m in model_lst if custom_filter(m)], key=lambda m: m.downloads, reverse=True)
|
120 |
+
|
121 |
+
for i in range(min(50, len(filtered_model_lst))):
|
122 |
+
model = filtered_model_lst[i]
|
123 |
+
|
124 |
+
print(f'Considering {model.id} ..')
|
125 |
+
|
126 |
+
from huggingface_hub import snapshot_download
|
127 |
+
from src.backend.envs import EVAL_REQUESTS_PATH_BACKEND
|
128 |
+
from src.backend.manage_requests import get_eval_requests
|
129 |
+
from src.backend.manage_requests import EvalRequest
|
130 |
+
|
131 |
+
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
132 |
+
|
133 |
+
PENDING_STATUS = "PENDING"
|
134 |
+
RUNNING_STATUS = "RUNNING"
|
135 |
+
FINISHED_STATUS = "FINISHED"
|
136 |
+
FAILED_STATUS = "FAILED"
|
137 |
+
|
138 |
+
status = [PENDING_STATUS, RUNNING_STATUS, FINISHED_STATUS, FAILED_STATUS]
|
139 |
+
|
140 |
+
# Get all eval request that are FINISHED, if you want to run other evals, change this parameter
|
141 |
+
eval_requests: list[EvalRequest] = get_eval_requests(job_status=status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
142 |
+
|
143 |
+
requested_model_names = {e.model for e in eval_requests}
|
144 |
+
|
145 |
+
if model.id not in requested_model_names:
|
146 |
+
add_new_eval(model=model.id, base_model='', revision='main', precision='float32', private=False, weight_type='Original', model_type='pretrained')
|
147 |
+
else:
|
148 |
+
print(f'Model {model.id} already added, not adding it to the queue again.')
|
149 |
+
|
150 |
+
|
151 |
+
if __name__ == "__main__":
|
152 |
+
main()
|