Spaces:
Runtime error
Runtime error
File size: 6,456 Bytes
9346f1c 4596a70 0227006 5f65cec 4596a70 9346f1c 4596a70 2a5f9fb 8c49cb6 2246286 8c49cb6 976f398 df66f6e 9d22eee df66f6e 976f398 df66f6e 2a5f9fb f2bc0a5 df66f6e f2bc0a5 8c49cb6 2a73469 10f9b3c 2a5f9fb 26286b2 d084b26 2a5f9fb 26286b2 d084b26 2a5f9fb 26286b2 a885f09 3dfaf22 ae85651 adb0416 2a73469 b1a1395 551debe ffefe11 adb0416 614ee1f 1f60a20 8c49cb6 72a0f0f e3a8804 ef5b51c 512b095 a2790cb 72a0f0f 512b095 aa7c3f4 adb0416 8c49cb6 ecef2dc 7644705 72a0f0f ef5b51c adb0416 ef5b51c adb0416 8c49cb6 e3a8804 8c49cb6 a2790cb 8c49cb6 2a5f9fb 8c49cb6 3ae1b8c ab6f548 3ae1b8c dc0413f 3ae1b8c dc0413f d2179b0 8c49cb6 d2179b0 7644705 e98a91e 1b030ef 5f65cec e98a91e 5f65cec 460d762 5f65cec e98a91e 1806f33 5f65cec f2bc0a5 5f65cec 8cb7546 5f65cec d16cee2 5f65cec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import gradio as gr
import json
import os
from datetime import datetime, timezone
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
FAQ_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.submission.check_validity import already_submitted_models
from src.tools.collections import update_collections
from src.tools.plots import (
create_metric_plot_obj,
create_plot_df,
create_scores_df,
)
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
except Exception:
restart_space()
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
update_collections(original_df.copy())
leaderboard_df = original_df.copy()
plot_df = create_plot_df(create_scores_df(raw_data))
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
type_query: list,
precision_query: str,
size_query: list,
show_deleted: bool,
query: str,
):
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame):
"""Added by Abishek"""
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
# Show all models
if show_deleted:
filtered_df = df
else: # Show only still on the hub models
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
import unicodedata
def is_valid_unicode(char):
try:
unicodedata.name(char)
return True # Valid Unicode character
except ValueError:
return False # Invalid Unicode character
def remove_invalid_unicode(input_string):
if isinstance(input_string, str):
valid_chars = [char for char in input_string if is_valid_unicode(char)]
return ''.join(valid_chars)
else:
return input_string # Return non-string values as is
dummy1 = gr.Textbox(visible=False)
hidden_leaderboard_table_for_search = gr.components.Dataframe(
headers=COLS,
datatype=TYPES,
visible=False,
line_breaks=False,
interactive=False
)
def display(x, y):
# Assuming df is your DataFrame
for column in original_df.columns:
if original_df[column].dtype == 'object':
original_df[column] = original_df[column].apply(remove_invalid_unicode)
json_data = original_df.to_json(orient='records', columns=COLS)
print(json_data) # Print JSON representation
return original_df
INTRODUCTION_TEXT = """
This is a copied space from Open Source LLM leaderboard. Instead of displaying
the results as table the space simply provides a gradio API interface to access
the full leaderboard data easily.
Example python on how to access the data:
```python
from gradio_client import Client
import json
client = Client("https://felixz-open-llm-leaderboard.hf.space/")
json_data = client.predict("","", api_name='/predict')
with open(json_data, 'r') as file:
file_data = file.read()
# Load the JSON data
data = json.loads(file_data)
# Get the headers and the data
headers = data['headers']
data = data['data']
```
"""
interface = gr.Interface(
fn=display,
inputs=[ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text"),
dummy1
],
outputs=[hidden_leaderboard_table_for_search]
)
interface.launch()
|