from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.vision.all import * # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME" repo_id = "rodrigomiranda98/tweet-eval-emotion" learner = from_pretrained_fastai(repo_id) labels = ['anger', 'joy', 'optimism', 'sadness'] # Definimos una función que se encarga de llevar a cabo las predicciones def predict(text): pred, pred_idx, probs = learner.predict(text) print(f'pred: {pred}') print(f'probs: {probs}') return {labels[i]: float(probs[i]) for i in range(len(labels))} # Creamos la interfaz y la lanzamos. gr.Interface( fn=predict, inputs=gr.inputs.Textbox(lines=5, placeholder="Inserta el texto aquí"), outputs=gr.outputs.Label(num_top_classes=4), examples=["Everything will be fine, you'll see!", "My favorite team did not qualify, I'm sad."] ).launch(share=False)