rohan13's picture
Making open_api_key static from env variable
9987dc1
raw
history blame
7.73 kB
import asyncio
import os
import time
import glob
import gradio as gr
from dotenv import load_dotenv
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from grader import Grader
from ingest import ingest_canvas_discussions
from utils import GraderQA
load_dotenv()
pickle_file = "vector_stores/canvas-discussions.pkl"
index_file = "vector_stores/canvas-discussions.index"
grading_model = 'gpt-4'
qa_model = 'gpt-3.5-turbo-16k'
llm = ChatOpenAI(model_name=qa_model, temperature=0, verbose=True)
embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')
grader = None
grader_qa = None
def add_text(history, text):
print("Question asked: " + text)
response = run_model(text)
history = history + [(text, response)]
print(history)
return history, ""
def run_model(text):
global grader, grader_qa
start_time = time.time()
print("start time:" + str(start_time))
if not grader_qa and not grader:
if os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize(
pickle_file) > 0 and os.path.isfile('docs/discussion_entries.json') and os.path.isfile(
'docs/rubric-data.json') > 0:
grader = Grader(qa_model)
grader_qa = GraderQA(grader, embeddings)
elif not grader_qa:
grader.llm.model_name = qa_model
grader_qa = GraderQA(grader, embeddings)
response = grader_qa.chain(text)
sources = []
for document in response['source_documents']:
sources.append(str(document.metadata))
print(sources)
source = ','.join(set(sources))
response = response['answer'] + '\nSources: ' + source
end_time = time.time()
# # If response contains string `SOURCES:`, then add a \n before `SOURCES`
# if "SOURCES:" in response:
# response = response.replace("SOURCES:", "\nSOURCES:")
response = response + "\n\n" + "Time taken: " + str(end_time - start_time)
print(response)
print("Time taken: " + str(end_time - start_time))
return response
def set_model(history):
history = get_first_message(history)
return history
def ingest(url, canvas_api_key, history):
global grader, llm, embeddings
text = f"Download data from {url} and ingest it to grade discussions"
ingest_canvas_discussions(url, canvas_api_key)
grader = Grader(grading_model)
response = "Ingested canvas data successfully"
history = history + [(text, response)]
return get_grading_status(history)
def start_grading(url, canvas_api_key, history):
global grader, grader_qa
text = f"Start grading discussions from {url}"
if not url or not canvas_api_key:
response = "Please enter all the fields to initiate grading"
elif grader:
# Create a new event loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
# Use the event loop to run the async function
loop.run_until_complete(grader.run_chain())
grader_qa = GraderQA(grader, embeddings)
response = "Grading done"
finally:
# Close the loop after use
loop.close()
else:
response = "Please ingest data before grading"
history = history + [(text, response)]
return history
def start_downloading():
files = glob.glob("output/*.csv")
if files:
file = files[0]
return gr.outputs.File(file)
else:
return "File not found"
def get_first_message(history):
global grader_qa
history = [(None,
'Get feedback on your canvas discussions. Add your discussion url and get your discussions graded in instantly.')]
history = get_grading_status(history)
return history
def get_grading_status(history):
global grader, grader_qa
# Check if grading is complete
if os.path.isdir('output') and len(glob.glob("docs/*.json")) > 0 and len(glob.glob("docs/*.html")) > 0:
if not grader:
grader = Grader(qa_model)
grader_qa = GraderQA(grader, embeddings)
elif not grader_qa:
grader_qa = GraderQA(grader, embeddings)
history = history + [(None, 'Grading is already complete. You can now ask questions')]
enable_fields(False, False, False, False, True, True, True)
# Check if data is ingested
elif len(glob.glob("docs/*.json")) > 0 and len(glob.glob("docs/*.html")):
if not grader_qa:
grader = Grader(qa_model)
history = history + [(None, 'Canvas data is already ingested. You can grade discussions now')]
enable_fields(False, False, False, True, True, False, False)
else:
history = history + [(None, 'Please ingest data and start grading')]
url.disabled = True
enable_fields(True, True, True, True, True, False, False)
return history
# handle enable/disable of fields
def enable_fields(url_status, canvas_api_key_status, submit_status, grade_status,
download_status, chatbot_txt_status, chatbot_btn_status):
url.interactive = url_status
canvas_api_key.interactive = canvas_api_key_status
submit.interactive = submit_status
grade.interactive = grade_status
download.interactive = download_status
txt.interactive = chatbot_txt_status
ask.interactive = chatbot_btn_status
if not chatbot_txt_status:
txt.placeholder = "Please grade discussions first"
else:
txt.placeholder = "Ask a question"
if not url_status:
url.placeholder = "Data already ingested"
if not canvas_api_key_status:
canvas_api_key.placeholder = "Data already ingested"
def bot(history):
return history
with gr.Blocks() as demo:
gr.Markdown(f"<h2><center>{'Canvas Discussion Grading With Feedback'}</center></h2>")
with gr.Row():
url = gr.Textbox(
label="Canvas Discussion URL",
placeholder="Enter your Canvas Discussion URL"
)
canvas_api_key = gr.Textbox(
label="Canvas API Key",
placeholder="Enter your Canvas API Key", type="password"
)
with gr.Row():
submit = gr.Button(value="Submit", variant="secondary", )
grade = gr.Button(value="Grade", variant="secondary")
download = gr.Button(value="Download", variant="secondary")
reset = gr.Button(value="Reset", variant="secondary")
chatbot = gr.Chatbot([], label="Chat with grading results", elem_id="chatbot", height=400)
with gr.Row():
with gr.Column(scale=3):
txt = gr.Textbox(
label="Ask questions about how students did on the discussion",
placeholder="Enter text and press enter, or upload an image", lines=1
)
ask = gr.Button(value="Ask", variant="secondary", scale=1)
chatbot.value = get_first_message([])
submit.click(ingest, inputs=[url, canvas_api_key, chatbot], outputs=[chatbot],
postprocess=False).then(
bot, chatbot, chatbot
)
grade.click(start_grading, inputs=[url, canvas_api_key, chatbot], outputs=[chatbot],
postprocess=False).then(
bot, chatbot, chatbot
)
download.click(start_downloading, inputs=[], outputs=[chatbot], postprocess=False).then(
bot, chatbot, chatbot
)
txt.submit(add_text, [chatbot, txt], [chatbot, txt], postprocess=False).then(
bot, chatbot, chatbot
)
ask.click(add_text, inputs=[chatbot, txt], outputs=[chatbot, txt], postprocess=False,).then(
bot, chatbot, chatbot
)
set_model(chatbot)
if __name__ == "__main__":
demo.queue()
demo.queue(concurrency_count=5)
demo.launch(debug=True, )