File size: 4,497 Bytes
2376116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import pickle
import time
from urllib.parse import urlparse, urljoin

import faiss
import requests
from PyPDF2 import PdfReader
from bs4 import BeautifulSoup
from langchain.docstore.document import Document
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.faiss import FAISS

book_url = 'https://g.co/kgs/2VFC7u'
book_file = "Book.pdf"
url = 'https://makerlab.illinois.edu/'
def get_search_index(pickle_file, index_file, embeddings):

    if os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize(pickle_file) > 0:
        # Load index from pickle file
        with open(pickle_file, "rb") as f:
            search_index = pickle.load(f)
    else:
        source_chunks = create_chunk_documents()

        search_index = search_index_from_docs(source_chunks, embeddings=embeddings)

        faiss.write_index(search_index.index, index_file)

        # Save index to pickle file
        with open(pickle_file, "wb") as f:
            pickle.dump(search_index, f)

    return search_index


def create_chunk_documents():
    sources = fetch_data_for_embeddings(url, book_file, book_url)
    # print("sources" + str(len(sources)))

    splitter = CharacterTextSplitter(separator=" ", chunk_size=800, chunk_overlap=0)

    source_chunks = splitter.split_documents(sources)

    for chunk in source_chunks:
        print("Size of chunk: " + str(len(chunk.page_content) + len(chunk.metadata)))
        if chunk.page_content is None or chunk.page_content == '':
            print("removing chunk: "+ chunk.page_content)
            source_chunks.remove(chunk)
        elif len(chunk.page_content) >=1000:
            print("splitting document")
            source_chunks.extend(splitter.split_documents([chunk]))
    # print("Chunks: " + str(len(source_chunks)) + "and type " + str(type(source_chunks)))
    return source_chunks


def fetch_data_for_embeddings(url, book_file, book_url):
    sources = get_website_data(url)
    sources.extend(get_document_data(book_file, book_url))
    return sources

def get_website_data(index_url):
    # Get all page paths from index
    paths = get_paths(index_url)

    # Filter out invalid links and join them with the base URL
    links = get_links(index_url, paths)

    return get_content_from_links(links, index_url)


def get_content_from_links(links, index_url):
    content_list = []
    for link in set(links):
        if link.startswith(index_url):
            page_data = requests.get(link).content
            soup = BeautifulSoup(page_data, "html.parser")

            # Get page content
            content = soup.get_text(separator="\n")
            # print(link)

            # Get page metadata
            metadata = {"source": link}

            content_list.append(Document(page_content=content, metadata=metadata))
    time.sleep(1)
    # print("content list" + str(len(content_list)))
    return content_list


def get_paths(index_url):
    index_data = requests.get(index_url).content
    soup = BeautifulSoup(index_data, "html.parser")
    paths = set([a.get('href') for a in soup.find_all('a', href=True)])
    return paths


def get_links(index_url, paths):
    links = []
    for path in paths:
        url = urljoin(index_url, path)
        parsed_url = urlparse(url)
        if parsed_url.scheme in ["http", "https"] and "squarespace" not in parsed_url.netloc:
            links.append(url)
    return links


def get_document_data(book_file, book_url):
    document_list = []
    with open(book_file, 'rb') as f:
        pdf_reader = PdfReader(f)
        for i in range(len(pdf_reader.pages)):
            page_text = pdf_reader.pages[i].extract_text()
            metadata = {"source": book_url}
            document_list.append(Document(page_content=page_text, metadata=metadata))

    # print("document list" + str(len(document_list)))
    return document_list

def search_index_from_docs(source_chunks, embeddings):
    # Create index from chunk documents
    # print("Size of chunk" + str(len(source_chunks)))
    search_index = FAISS.from_texts([doc.page_content for doc in source_chunks], embeddings, metadatas=[doc.metadata for doc in source_chunks])
    return search_index
def generate_answer(chain, index, question):
    #Get answer
    answer = chain(
        {
            "input_documents": index.similarity_search(question, k=4),
            "question": question,
        },
        return_only_outputs=True,
    )["output_text"]

    return answer