makerlab-bot / utils.py
rohan13's picture
pr/1 (#1)
2376116
raw
history blame
4.5 kB
import os
import pickle
import time
from urllib.parse import urlparse, urljoin
import faiss
import requests
from PyPDF2 import PdfReader
from bs4 import BeautifulSoup
from langchain.docstore.document import Document
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.faiss import FAISS
book_url = 'https://g.co/kgs/2VFC7u'
book_file = "Book.pdf"
url = 'https://makerlab.illinois.edu/'
def get_search_index(pickle_file, index_file, embeddings):
if os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize(pickle_file) > 0:
# Load index from pickle file
with open(pickle_file, "rb") as f:
search_index = pickle.load(f)
else:
source_chunks = create_chunk_documents()
search_index = search_index_from_docs(source_chunks, embeddings=embeddings)
faiss.write_index(search_index.index, index_file)
# Save index to pickle file
with open(pickle_file, "wb") as f:
pickle.dump(search_index, f)
return search_index
def create_chunk_documents():
sources = fetch_data_for_embeddings(url, book_file, book_url)
# print("sources" + str(len(sources)))
splitter = CharacterTextSplitter(separator=" ", chunk_size=800, chunk_overlap=0)
source_chunks = splitter.split_documents(sources)
for chunk in source_chunks:
print("Size of chunk: " + str(len(chunk.page_content) + len(chunk.metadata)))
if chunk.page_content is None or chunk.page_content == '':
print("removing chunk: "+ chunk.page_content)
source_chunks.remove(chunk)
elif len(chunk.page_content) >=1000:
print("splitting document")
source_chunks.extend(splitter.split_documents([chunk]))
# print("Chunks: " + str(len(source_chunks)) + "and type " + str(type(source_chunks)))
return source_chunks
def fetch_data_for_embeddings(url, book_file, book_url):
sources = get_website_data(url)
sources.extend(get_document_data(book_file, book_url))
return sources
def get_website_data(index_url):
# Get all page paths from index
paths = get_paths(index_url)
# Filter out invalid links and join them with the base URL
links = get_links(index_url, paths)
return get_content_from_links(links, index_url)
def get_content_from_links(links, index_url):
content_list = []
for link in set(links):
if link.startswith(index_url):
page_data = requests.get(link).content
soup = BeautifulSoup(page_data, "html.parser")
# Get page content
content = soup.get_text(separator="\n")
# print(link)
# Get page metadata
metadata = {"source": link}
content_list.append(Document(page_content=content, metadata=metadata))
time.sleep(1)
# print("content list" + str(len(content_list)))
return content_list
def get_paths(index_url):
index_data = requests.get(index_url).content
soup = BeautifulSoup(index_data, "html.parser")
paths = set([a.get('href') for a in soup.find_all('a', href=True)])
return paths
def get_links(index_url, paths):
links = []
for path in paths:
url = urljoin(index_url, path)
parsed_url = urlparse(url)
if parsed_url.scheme in ["http", "https"] and "squarespace" not in parsed_url.netloc:
links.append(url)
return links
def get_document_data(book_file, book_url):
document_list = []
with open(book_file, 'rb') as f:
pdf_reader = PdfReader(f)
for i in range(len(pdf_reader.pages)):
page_text = pdf_reader.pages[i].extract_text()
metadata = {"source": book_url}
document_list.append(Document(page_content=page_text, metadata=metadata))
# print("document list" + str(len(document_list)))
return document_list
def search_index_from_docs(source_chunks, embeddings):
# Create index from chunk documents
# print("Size of chunk" + str(len(source_chunks)))
search_index = FAISS.from_texts([doc.page_content for doc in source_chunks], embeddings, metadatas=[doc.metadata for doc in source_chunks])
return search_index
def generate_answer(chain, index, question):
#Get answer
answer = chain(
{
"input_documents": index.similarity_search(question, k=4),
"question": question,
},
return_only_outputs=True,
)["output_text"]
return answer