Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Dockerfile +13 -0
- app.py +92 -0
- requirements.txt +4 -0
Dockerfile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:latest
|
2 |
+
|
3 |
+
WORKDIR /
|
4 |
+
|
5 |
+
COPY ./requirements.txt .
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
EXPOSE 7860
|
12 |
+
|
13 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
+
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
|
7 |
+
import logging
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Add logging
|
12 |
+
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
|
18 |
+
|
19 |
+
handler = logging.StreamHandler()
|
20 |
+
|
21 |
+
handler.setFormatter(formatter)
|
22 |
+
|
23 |
+
logger.addHandler(handler)
|
24 |
+
|
25 |
+
# Add CORS
|
26 |
+
|
27 |
+
origins = ["*"]
|
28 |
+
|
29 |
+
app.add_middleware(
|
30 |
+
CORSMiddleware,
|
31 |
+
allow_origins=origins,
|
32 |
+
allow_credentials=True,
|
33 |
+
allow_methods=["GET", "POST", "PUT", "DELETE"],
|
34 |
+
allow_headers=["*"],
|
35 |
+
)
|
36 |
+
|
37 |
+
intent_model = AutoModelForCausalLM.from_pretrained("llmware/slim-intent")
|
38 |
+
intent_tokenizer = AutoTokenizer.from_pretrained("llmware/slim-intent")
|
39 |
+
|
40 |
+
sentiment_model = AutoModelForCausalLM.from_pretrained("llmware/slim-sentiment")
|
41 |
+
sentiment_tokenizer = AutoTokenizer.from_pretrained("llmware/slim-sentiment")
|
42 |
+
|
43 |
+
def getResponse(model, tokenizer, text, params):
|
44 |
+
function = "classify"
|
45 |
+
|
46 |
+
prompt = "<human>: " + text + "\n" + f"<{function}> {params} </{function}>\n<bot>:"
|
47 |
+
|
48 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
49 |
+
start_of_input = len(inputs.input_ids[0])
|
50 |
+
|
51 |
+
outputs = model.generate(
|
52 |
+
inputs.input_ids.to('cpu'),
|
53 |
+
eos_token_id=tokenizer.eos_token_id,
|
54 |
+
pad_token_id=tokenizer.eos_token_id,
|
55 |
+
do_sample=True,
|
56 |
+
temperature=0.3,
|
57 |
+
max_new_tokens=100
|
58 |
+
)
|
59 |
+
|
60 |
+
output = tokenizer.decode(outputs[0][start_of_input:], skip_special_tokens=True)
|
61 |
+
|
62 |
+
return output
|
63 |
+
|
64 |
+
@app.get("/")
|
65 |
+
def read_root():
|
66 |
+
return {
|
67 |
+
"message": "API running successfully",
|
68 |
+
"endpoints": [
|
69 |
+
"/api/sentiment/",
|
70 |
+
"/api/intent/"
|
71 |
+
]
|
72 |
+
}
|
73 |
+
|
74 |
+
@app.post("/api/intent/")
|
75 |
+
def intentResponse(text: str):
|
76 |
+
params = "intent"
|
77 |
+
try:
|
78 |
+
responses = getResponse(intent_model, intent_tokenizer, text, params)
|
79 |
+
return responses
|
80 |
+
except Exception as e:
|
81 |
+
logger.exception(e)
|
82 |
+
return {"API Error": str(e)}
|
83 |
+
|
84 |
+
@app.post("/api/sentiment/")
|
85 |
+
def sentimentResponse(text: str):
|
86 |
+
params = "sentiment"
|
87 |
+
try:
|
88 |
+
responses = getResponse(sentiment_model, sentiment_tokenizer, text, params)
|
89 |
+
return responses
|
90 |
+
except Exception as e:
|
91 |
+
logger.exception(e)
|
92 |
+
return {"API Error": str(e)}
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
fastapi
|
4 |
+
uvicorn
|