|
import argparse |
|
import gradio as gr |
|
import torch |
|
import commons |
|
import utils |
|
import re |
|
from models import SynthesizerTrn |
|
from text.symbols import symbols |
|
from text import text_to_sequence |
|
import numpy as np |
|
import os |
|
import translators.server as tss |
|
import psutil |
|
limitation = os.getenv("SYSTEM") == "spaces" |
|
max_len = 150 |
|
def show_memory_info(hint): |
|
pid = os.getpid() |
|
p = psutil.Process(pid) |
|
info = p.memory_info() |
|
memory = info.rss / 1024.0 / 1024 |
|
print("{} 内存占用: {} MB".format(hint, memory)) |
|
|
|
|
|
def get_text(text, hps): |
|
text_norm = text_to_sequence(text, hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = torch.LongTensor(text_norm) |
|
return text_norm |
|
|
|
|
|
hps = utils.get_hparams_from_file("./configs/uma87.json") |
|
net_g = SynthesizerTrn( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model) |
|
_ = net_g.eval() |
|
|
|
_ = utils.load_checkpoint("pretrained_models/G_1153000.pth", net_g, None) |
|
|
|
def infer(text, character, language, duration, noise_scale, noise_scale_w): |
|
|
|
if limitation: |
|
text_len = len(re.sub("\[([A-Z]{2})\]", "", text)) |
|
if text_len > max_len: |
|
return "Error: Text is too long", None |
|
show_memory_info("infer调用前") |
|
if language == '日本語': |
|
pass |
|
elif language == '简体中文': |
|
text = tss.google(text, from_language='zh', to_language='ja') |
|
elif language == 'English': |
|
text = tss.google(text, from_language='en', to_language='ja') |
|
char_id = int(character.split(':')[0]) |
|
stn_tst = get_text(text, hps) |
|
with torch.no_grad(): |
|
x_tst = stn_tst.unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) |
|
sid = torch.LongTensor([char_id]) |
|
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, |
|
length_scale=duration)[0][0, 0].data.cpu().float().numpy() |
|
del stn_tst, x_tst, x_tst_lengths, sid |
|
show_memory_info("infer调用后") |
|
return (text, (22050, audio)) |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") |
|
args = parser.parse_args() |
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("# Umamusume voice synthesizer 赛马娘语音合成器\n\n" |
|
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=Plachta.VITS-Umamusume-voice-synthesizer)\n\n" |
|
"This synthesizer is created based on [VITS](https://arxiv.org/abs/2106.06103) model, trained on voice data extracted from mobile game Umamusume Pretty Derby \n\n" |
|
"这个合成器是基于VITS文本到语音模型,在从手游《賽馬娘:Pretty Derby》解包的语音数据上训练得到。\n\n" |
|
"[introduction video / 模型介绍视频](https://www.bilibili.com/video/BV1T84y1e7p5/?vd_source=6d5c00c796eff1cbbe25f1ae722c2f9f#reply607277701)\n\n" |
|
"Due to some unknown reason, VITS inference on CPU results in accumulative memory leakage, resulting in Runtime error:Memory limit exceeded.\n\n" |
|
"In case of space crash, you may duplicate this space or [open in Colab](https://colab.research.google.com/drive/1J2Vm5dczTF99ckyNLXV0K-hQTxLwEaj5?usp=sharing) to run it privately and without any queue.\n\n" |
|
"由于未知原因,VITS模型在CPU上执行推理时会有逐步累积的内存泄漏,最终导致空间报错Runtime error:Memory limit exceeded,目前正在排查。\n\n" |
|
"以防该空间崩溃,您可以复制该空间至私人空间运行或打开[Google Colab](https://colab.research.google.com/drive/1J2Vm5dczTF99ckyNLXV0K-hQTxLwEaj5?usp=sharing)在线运行。\n\n" |
|
"If your input language is not Japanese, it will be translated to Japanese by Google translator, but accuracy is not guaranteed.\n\n" |
|
"如果您的输入语言不是日语,则会由谷歌翻译自动翻译为日语,但是准确性不能保证。\n\n" |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
textbox = gr.Textbox(label="Text", placeholder="Type your sentence here (Maximum 150 words)", lines=2) |
|
|
|
char_dropdown = gr.Dropdown(choices=['0:特别周', '1:无声铃鹿', '2:东海帝王', '3:丸善斯基', |
|
'4:富士奇迹', '5:小栗帽', '6:黄金船', '7:伏特加', |
|
'8:大和赤骥', '9:大树快车', '10:草上飞', '11:菱亚马逊', |
|
'12:目白麦昆', '13:神鹰', '14:好歌剧', '15:成田白仁', |
|
'16:鲁道夫象征', '17:气槽', '18:爱丽数码', '19:青云天空', |
|
'20:玉藻十字', '21:美妙姿势', '22:琵琶晨光', '23:重炮', |
|
'24:曼城茶座', '25:美普波旁', '26:目白雷恩', '27:菱曙', |
|
'28:雪之美人', '29:米浴', '30:艾尼斯风神', '31:爱丽速子', |
|
'32:爱慕织姬', '33:稻荷一', '34:胜利奖券', '35:空中神宫', |
|
'36:荣进闪耀', '37:真机伶', '38:川上公主', '39:黄金城市', |
|
'40:樱花进王', '41:采珠', '42:新光风', '43:东商变革', |
|
'44:超级小溪', '45:醒目飞鹰', '46:荒漠英雄', '47:东瀛佐敦', |
|
'48:中山庆典', '49:成田大进', '50:西野花', '51:春乌拉拉', |
|
'52:青竹回忆', '53:微光飞驹', '54:美丽周日', '55:待兼福来', |
|
'56:Mr.C.B', '57:名将怒涛', '58:目白多伯', '59:优秀素质', |
|
'60:帝王光环', '61:待兼诗歌剧', '62:生野狄杜斯', '63:目白善信', |
|
'64:大拓太阳神', '65:双涡轮', '66:里见光钻', '67:北部玄驹', |
|
'68:樱花千代王', '69:天狼星象征', '70:目白阿尔丹', '71:八重无敌', |
|
'72:鹤丸刚志', '73:目白光明', '74:樱花桂冠', '75:成田路', |
|
'76:也文摄辉', '77:吉兆', '78:谷野美酒', '79:第一红宝石', |
|
'80:真弓快车', '81:骏川手纲', '82:凯斯奇迹', '83:小林历奇', |
|
'84:北港火山', '85:奇锐骏', '86:秋川理事长'], label='character') |
|
language_dropdown = gr.Dropdown(choices=['日本語', '简体中文', 'English'], label='language') |
|
|
|
|
|
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1, label='时长 Duration') |
|
noise_scale_slider = gr.Slider(minimum=0.1, maximum=5, value=0.667, step=0.001, label='噪声比例 noise_scale') |
|
noise_scale_w_slider = gr.Slider(minimum=0.1, maximum=5, value=0.8, step=0.1, label='噪声偏差 noise_scale_w') |
|
with gr.Column(): |
|
text_output = gr.Textbox(label="Output Text") |
|
audio_output = gr.Audio(label="Output Voice") |
|
btn = gr.Button("Generate!") |
|
btn.click(infer, inputs=[textbox, char_dropdown, language_dropdown, |
|
duration_slider, noise_scale_slider, noise_scale_w_slider], |
|
outputs=[text_output, audio_output]) |
|
examples = [['お疲れ様です,トレーナーさん。', '1:无声铃鹿', '日本語', 1, 0.667, 0.8], |
|
['張り切っていこう!', '67:北部玄驹', '日本語', 1, 0.667, 0.8], |
|
['何でこんなに慣れでんのよ,私のほが先に好きだっだのに。', '10:草上飞', '日本語', 1, 0.667, 0.8], |
|
['授業中に出しだら,学校生活終わるですわ。', '12:目白麦昆', '日本語', 1, 0.667, 0.8], |
|
['お帰りなさい,お兄様!', '29:米浴', '日本語', 1, 0.667, 0.8], |
|
['私の処女をもらっでください!', '29:米浴', '日本語', 1, 0.667, 0.8]] |
|
gr.Examples( |
|
examples=examples, |
|
inputs=[textbox, char_dropdown, language_dropdown, |
|
duration_slider, noise_scale_slider,noise_scale_w_slider], |
|
outputs=[text_output, audio_output], |
|
fn=infer |
|
) |
|
app.queue(concurrency_count=3).launch(show_api=False, share=args.share) |