Spaces:
Sleeping
Sleeping
# type: ignore | |
""" | |
Modified from https://github.com/philz1337x/clarity-upscaler | |
which is a copy of https://github.com/AUTOMATIC1111/stable-diffusion-webui | |
which is a copy of https://github.com/victorca25/iNNfer | |
which is a copy of https://github.com/xinntao/ESRGAN | |
""" | |
import math | |
import os | |
from collections import OrderedDict, namedtuple | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from PIL import Image | |
#################### | |
# RRDBNet Generator | |
#################### | |
class RRDBNet(nn.Module): | |
def __init__( | |
self, | |
in_nc, | |
out_nc, | |
nf, | |
nb, | |
nr=3, | |
gc=32, | |
upscale=4, | |
norm_type=None, | |
act_type="leakyrelu", | |
mode="CNA", | |
upsample_mode="upconv", | |
convtype="Conv2D", | |
finalact=None, | |
gaussian_noise=False, | |
plus=False, | |
): | |
super(RRDBNet, self).__init__() | |
n_upscale = int(math.log(upscale, 2)) | |
if upscale == 3: | |
n_upscale = 1 | |
self.resrgan_scale = 0 | |
if in_nc % 16 == 0: | |
self.resrgan_scale = 1 | |
elif in_nc != 4 and in_nc % 4 == 0: | |
self.resrgan_scale = 2 | |
fea_conv = conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype) | |
rb_blocks = [ | |
RRDB( | |
nf, | |
nr, | |
kernel_size=3, | |
gc=32, | |
stride=1, | |
bias=1, | |
pad_type="zero", | |
norm_type=norm_type, | |
act_type=act_type, | |
mode="CNA", | |
convtype=convtype, | |
gaussian_noise=gaussian_noise, | |
plus=plus, | |
) | |
for _ in range(nb) | |
] | |
LR_conv = conv_block( | |
nf, | |
nf, | |
kernel_size=3, | |
norm_type=norm_type, | |
act_type=None, | |
mode=mode, | |
convtype=convtype, | |
) | |
if upsample_mode == "upconv": | |
upsample_block = upconv_block | |
elif upsample_mode == "pixelshuffle": | |
upsample_block = pixelshuffle_block | |
else: | |
raise NotImplementedError(f"upsample mode [{upsample_mode}] is not found") | |
if upscale == 3: | |
upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype) | |
else: | |
upsampler = [upsample_block(nf, nf, act_type=act_type, convtype=convtype) for _ in range(n_upscale)] | |
HR_conv0 = conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype) | |
HR_conv1 = conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype) | |
outact = act(finalact) if finalact else None | |
self.model = sequential( | |
fea_conv, | |
ShortcutBlock(sequential(*rb_blocks, LR_conv)), | |
*upsampler, | |
HR_conv0, | |
HR_conv1, | |
outact, | |
) | |
def forward(self, x, outm=None): | |
if self.resrgan_scale == 1: | |
feat = pixel_unshuffle(x, scale=4) | |
elif self.resrgan_scale == 2: | |
feat = pixel_unshuffle(x, scale=2) | |
else: | |
feat = x | |
return self.model(feat) | |
class RRDB(nn.Module): | |
""" | |
Residual in Residual Dense Block | |
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks) | |
""" | |
def __init__( | |
self, | |
nf, | |
nr=3, | |
kernel_size=3, | |
gc=32, | |
stride=1, | |
bias=1, | |
pad_type="zero", | |
norm_type=None, | |
act_type="leakyrelu", | |
mode="CNA", | |
convtype="Conv2D", | |
spectral_norm=False, | |
gaussian_noise=False, | |
plus=False, | |
): | |
super(RRDB, self).__init__() | |
# This is for backwards compatibility with existing models | |
if nr == 3: | |
self.RDB1 = ResidualDenseBlock_5C( | |
nf, | |
kernel_size, | |
gc, | |
stride, | |
bias, | |
pad_type, | |
norm_type, | |
act_type, | |
mode, | |
convtype, | |
spectral_norm=spectral_norm, | |
gaussian_noise=gaussian_noise, | |
plus=plus, | |
) | |
self.RDB2 = ResidualDenseBlock_5C( | |
nf, | |
kernel_size, | |
gc, | |
stride, | |
bias, | |
pad_type, | |
norm_type, | |
act_type, | |
mode, | |
convtype, | |
spectral_norm=spectral_norm, | |
gaussian_noise=gaussian_noise, | |
plus=plus, | |
) | |
self.RDB3 = ResidualDenseBlock_5C( | |
nf, | |
kernel_size, | |
gc, | |
stride, | |
bias, | |
pad_type, | |
norm_type, | |
act_type, | |
mode, | |
convtype, | |
spectral_norm=spectral_norm, | |
gaussian_noise=gaussian_noise, | |
plus=plus, | |
) | |
else: | |
RDB_list = [ | |
ResidualDenseBlock_5C( | |
nf, | |
kernel_size, | |
gc, | |
stride, | |
bias, | |
pad_type, | |
norm_type, | |
act_type, | |
mode, | |
convtype, | |
spectral_norm=spectral_norm, | |
gaussian_noise=gaussian_noise, | |
plus=plus, | |
) | |
for _ in range(nr) | |
] | |
self.RDBs = nn.Sequential(*RDB_list) | |
def forward(self, x): | |
if hasattr(self, "RDB1"): | |
out = self.RDB1(x) | |
out = self.RDB2(out) | |
out = self.RDB3(out) | |
else: | |
out = self.RDBs(x) | |
return out * 0.2 + x | |
class ResidualDenseBlock_5C(nn.Module): | |
""" | |
Residual Dense Block | |
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18) | |
Modified options that can be used: | |
- "Partial Convolution based Padding" arXiv:1811.11718 | |
- "Spectral normalization" arXiv:1802.05957 | |
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C. | |
{Rakotonirina} and A. {Rasoanaivo} | |
""" | |
def __init__( | |
self, | |
nf=64, | |
kernel_size=3, | |
gc=32, | |
stride=1, | |
bias=1, | |
pad_type="zero", | |
norm_type=None, | |
act_type="leakyrelu", | |
mode="CNA", | |
convtype="Conv2D", | |
spectral_norm=False, | |
gaussian_noise=False, | |
plus=False, | |
): | |
super(ResidualDenseBlock_5C, self).__init__() | |
self.noise = GaussianNoise() if gaussian_noise else None | |
self.conv1x1 = conv1x1(nf, gc) if plus else None | |
self.conv1 = conv_block( | |
nf, | |
gc, | |
kernel_size, | |
stride, | |
bias=bias, | |
pad_type=pad_type, | |
norm_type=norm_type, | |
act_type=act_type, | |
mode=mode, | |
convtype=convtype, | |
spectral_norm=spectral_norm, | |
) | |
self.conv2 = conv_block( | |
nf + gc, | |
gc, | |
kernel_size, | |
stride, | |
bias=bias, | |
pad_type=pad_type, | |
norm_type=norm_type, | |
act_type=act_type, | |
mode=mode, | |
convtype=convtype, | |
spectral_norm=spectral_norm, | |
) | |
self.conv3 = conv_block( | |
nf + 2 * gc, | |
gc, | |
kernel_size, | |
stride, | |
bias=bias, | |
pad_type=pad_type, | |
norm_type=norm_type, | |
act_type=act_type, | |
mode=mode, | |
convtype=convtype, | |
spectral_norm=spectral_norm, | |
) | |
self.conv4 = conv_block( | |
nf + 3 * gc, | |
gc, | |
kernel_size, | |
stride, | |
bias=bias, | |
pad_type=pad_type, | |
norm_type=norm_type, | |
act_type=act_type, | |
mode=mode, | |
convtype=convtype, | |
spectral_norm=spectral_norm, | |
) | |
if mode == "CNA": | |
last_act = None | |
else: | |
last_act = act_type | |
self.conv5 = conv_block( | |
nf + 4 * gc, | |
nf, | |
3, | |
stride, | |
bias=bias, | |
pad_type=pad_type, | |
norm_type=norm_type, | |
act_type=last_act, | |
mode=mode, | |
convtype=convtype, | |
spectral_norm=spectral_norm, | |
) | |
def forward(self, x): | |
x1 = self.conv1(x) | |
x2 = self.conv2(torch.cat((x, x1), 1)) | |
if self.conv1x1: | |
x2 = x2 + self.conv1x1(x) | |
x3 = self.conv3(torch.cat((x, x1, x2), 1)) | |
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1)) | |
if self.conv1x1: | |
x4 = x4 + x2 | |
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) | |
if self.noise: | |
return self.noise(x5.mul(0.2) + x) | |
else: | |
return x5 * 0.2 + x | |
#################### | |
# ESRGANplus | |
#################### | |
class GaussianNoise(nn.Module): | |
def __init__(self, sigma=0.1, is_relative_detach=False): | |
super().__init__() | |
self.sigma = sigma | |
self.is_relative_detach = is_relative_detach | |
self.noise = torch.tensor(0, dtype=torch.float) | |
def forward(self, x): | |
if self.training and self.sigma != 0: | |
self.noise = self.noise.to(device=x.device, dtype=x.device) | |
scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x | |
sampled_noise = self.noise.repeat(*x.size()).normal_() * scale | |
x = x + sampled_noise | |
return x | |
def conv1x1(in_planes, out_planes, stride=1): | |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
#################### | |
# SRVGGNetCompact | |
#################### | |
class SRVGGNetCompact(nn.Module): | |
"""A compact VGG-style network structure for super-resolution. | |
This class is copied from https://github.com/xinntao/Real-ESRGAN | |
""" | |
def __init__( | |
self, | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_conv=16, | |
upscale=4, | |
act_type="prelu", | |
): | |
super(SRVGGNetCompact, self).__init__() | |
self.num_in_ch = num_in_ch | |
self.num_out_ch = num_out_ch | |
self.num_feat = num_feat | |
self.num_conv = num_conv | |
self.upscale = upscale | |
self.act_type = act_type | |
self.body = nn.ModuleList() | |
# the first conv | |
self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)) | |
# the first activation | |
if act_type == "relu": | |
activation = nn.ReLU(inplace=True) | |
elif act_type == "prelu": | |
activation = nn.PReLU(num_parameters=num_feat) | |
elif act_type == "leakyrelu": | |
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) | |
self.body.append(activation) | |
# the body structure | |
for _ in range(num_conv): | |
self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1)) | |
# activation | |
if act_type == "relu": | |
activation = nn.ReLU(inplace=True) | |
elif act_type == "prelu": | |
activation = nn.PReLU(num_parameters=num_feat) | |
elif act_type == "leakyrelu": | |
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) | |
self.body.append(activation) | |
# the last conv | |
self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1)) | |
# upsample | |
self.upsampler = nn.PixelShuffle(upscale) | |
def forward(self, x): | |
out = x | |
for i in range(0, len(self.body)): | |
out = self.body[i](out) | |
out = self.upsampler(out) | |
# add the nearest upsampled image, so that the network learns the residual | |
base = F.interpolate(x, scale_factor=self.upscale, mode="nearest") | |
out += base | |
return out | |
#################### | |
# Upsampler | |
#################### | |
class Upsample(nn.Module): | |
r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data. | |
The input data is assumed to be of the form | |
`minibatch x channels x [optional depth] x [optional height] x width`. | |
""" | |
def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None): | |
super(Upsample, self).__init__() | |
if isinstance(scale_factor, tuple): | |
self.scale_factor = tuple(float(factor) for factor in scale_factor) | |
else: | |
self.scale_factor = float(scale_factor) if scale_factor else None | |
self.mode = mode | |
self.size = size | |
self.align_corners = align_corners | |
def forward(self, x): | |
return nn.functional.interpolate( | |
x, | |
size=self.size, | |
scale_factor=self.scale_factor, | |
mode=self.mode, | |
align_corners=self.align_corners, | |
) | |
def extra_repr(self): | |
if self.scale_factor is not None: | |
info = f"scale_factor={self.scale_factor}" | |
else: | |
info = f"size={self.size}" | |
info += f", mode={self.mode}" | |
return info | |
def pixel_unshuffle(x, scale): | |
"""Pixel unshuffle. | |
Args: | |
x (Tensor): Input feature with shape (b, c, hh, hw). | |
scale (int): Downsample ratio. | |
Returns: | |
Tensor: the pixel unshuffled feature. | |
""" | |
b, c, hh, hw = x.size() | |
out_channel = c * (scale**2) | |
assert hh % scale == 0 and hw % scale == 0 | |
h = hh // scale | |
w = hw // scale | |
x_view = x.view(b, c, h, scale, w, scale) | |
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w) | |
def pixelshuffle_block( | |
in_nc, | |
out_nc, | |
upscale_factor=2, | |
kernel_size=3, | |
stride=1, | |
bias=True, | |
pad_type="zero", | |
norm_type=None, | |
act_type="relu", | |
convtype="Conv2D", | |
): | |
""" | |
Pixel shuffle layer | |
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional | |
Neural Network, CVPR17) | |
""" | |
conv = conv_block( | |
in_nc, | |
out_nc * (upscale_factor**2), | |
kernel_size, | |
stride, | |
bias=bias, | |
pad_type=pad_type, | |
norm_type=None, | |
act_type=None, | |
convtype=convtype, | |
) | |
pixel_shuffle = nn.PixelShuffle(upscale_factor) | |
n = norm(norm_type, out_nc) if norm_type else None | |
a = act(act_type) if act_type else None | |
return sequential(conv, pixel_shuffle, n, a) | |
def upconv_block( | |
in_nc, | |
out_nc, | |
upscale_factor=2, | |
kernel_size=3, | |
stride=1, | |
bias=True, | |
pad_type="zero", | |
norm_type=None, | |
act_type="relu", | |
mode="nearest", | |
convtype="Conv2D", | |
): | |
"""Upconv layer""" | |
upscale_factor = (1, upscale_factor, upscale_factor) if convtype == "Conv3D" else upscale_factor | |
upsample = Upsample(scale_factor=upscale_factor, mode=mode) | |
conv = conv_block( | |
in_nc, | |
out_nc, | |
kernel_size, | |
stride, | |
bias=bias, | |
pad_type=pad_type, | |
norm_type=norm_type, | |
act_type=act_type, | |
convtype=convtype, | |
) | |
return sequential(upsample, conv) | |
#################### | |
# Basic blocks | |
#################### | |
def make_layer(basic_block, num_basic_block, **kwarg): | |
"""Make layers by stacking the same blocks. | |
Args: | |
basic_block (nn.module): nn.module class for basic block. (block) | |
num_basic_block (int): number of blocks. (n_layers) | |
Returns: | |
nn.Sequential: Stacked blocks in nn.Sequential. | |
""" | |
layers = [] | |
for _ in range(num_basic_block): | |
layers.append(basic_block(**kwarg)) | |
return nn.Sequential(*layers) | |
def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0): | |
"""activation helper""" | |
act_type = act_type.lower() | |
if act_type == "relu": | |
layer = nn.ReLU(inplace) | |
elif act_type in ("leakyrelu", "lrelu"): | |
layer = nn.LeakyReLU(neg_slope, inplace) | |
elif act_type == "prelu": | |
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) | |
elif act_type == "tanh": # [-1, 1] range output | |
layer = nn.Tanh() | |
elif act_type == "sigmoid": # [0, 1] range output | |
layer = nn.Sigmoid() | |
else: | |
raise NotImplementedError(f"activation layer [{act_type}] is not found") | |
return layer | |
class Identity(nn.Module): | |
def __init__(self, *kwargs): | |
super(Identity, self).__init__() | |
def forward(self, x, *kwargs): | |
return x | |
def norm(norm_type, nc): | |
"""Return a normalization layer""" | |
norm_type = norm_type.lower() | |
if norm_type == "batch": | |
layer = nn.BatchNorm2d(nc, affine=True) | |
elif norm_type == "instance": | |
layer = nn.InstanceNorm2d(nc, affine=False) | |
elif norm_type == "none": | |
def norm_layer(x): | |
return Identity() | |
else: | |
raise NotImplementedError(f"normalization layer [{norm_type}] is not found") | |
return layer | |
def pad(pad_type, padding): | |
"""padding layer helper""" | |
pad_type = pad_type.lower() | |
if padding == 0: | |
return None | |
if pad_type == "reflect": | |
layer = nn.ReflectionPad2d(padding) | |
elif pad_type == "replicate": | |
layer = nn.ReplicationPad2d(padding) | |
elif pad_type == "zero": | |
layer = nn.ZeroPad2d(padding) | |
else: | |
raise NotImplementedError(f"padding layer [{pad_type}] is not implemented") | |
return layer | |
def get_valid_padding(kernel_size, dilation): | |
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1) | |
padding = (kernel_size - 1) // 2 | |
return padding | |
class ShortcutBlock(nn.Module): | |
"""Elementwise sum the output of a submodule to its input""" | |
def __init__(self, submodule): | |
super(ShortcutBlock, self).__init__() | |
self.sub = submodule | |
def forward(self, x): | |
output = x + self.sub(x) | |
return output | |
def __repr__(self): | |
return "Identity + \n|" + self.sub.__repr__().replace("\n", "\n|") | |
def sequential(*args): | |
"""Flatten Sequential. It unwraps nn.Sequential.""" | |
if len(args) == 1: | |
if isinstance(args[0], OrderedDict): | |
raise NotImplementedError("sequential does not support OrderedDict input.") | |
return args[0] # No sequential is needed. | |
modules = [] | |
for module in args: | |
if isinstance(module, nn.Sequential): | |
for submodule in module.children(): | |
modules.append(submodule) | |
elif isinstance(module, nn.Module): | |
modules.append(module) | |
return nn.Sequential(*modules) | |
def conv_block( | |
in_nc, | |
out_nc, | |
kernel_size, | |
stride=1, | |
dilation=1, | |
groups=1, | |
bias=True, | |
pad_type="zero", | |
norm_type=None, | |
act_type="relu", | |
mode="CNA", | |
convtype="Conv2D", | |
spectral_norm=False, | |
): | |
"""Conv layer with padding, normalization, activation""" | |
assert mode in ["CNA", "NAC", "CNAC"], f"Wrong conv mode [{mode}]" | |
padding = get_valid_padding(kernel_size, dilation) | |
p = pad(pad_type, padding) if pad_type and pad_type != "zero" else None | |
padding = padding if pad_type == "zero" else 0 | |
if convtype == "PartialConv2D": | |
# this is definitely not going to work, but PartialConv2d doesn't work anyway and this shuts up static analyzer | |
from torchvision.ops import PartialConv2d | |
c = PartialConv2d( | |
in_nc, | |
out_nc, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=bias, | |
groups=groups, | |
) | |
elif convtype == "DeformConv2D": | |
from torchvision.ops import DeformConv2d # not tested | |
c = DeformConv2d( | |
in_nc, | |
out_nc, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=bias, | |
groups=groups, | |
) | |
elif convtype == "Conv3D": | |
c = nn.Conv3d( | |
in_nc, | |
out_nc, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=bias, | |
groups=groups, | |
) | |
else: | |
c = nn.Conv2d( | |
in_nc, | |
out_nc, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=bias, | |
groups=groups, | |
) | |
if spectral_norm: | |
c = nn.utils.spectral_norm(c) | |
a = act(act_type) if act_type else None | |
if "CNA" in mode: | |
n = norm(norm_type, out_nc) if norm_type else None | |
return sequential(p, c, n, a) | |
elif mode == "NAC": | |
if norm_type is None and act_type is not None: | |
a = act(act_type, inplace=False) | |
n = norm(norm_type, in_nc) if norm_type else None | |
return sequential(n, a, p, c) | |
def load_models( | |
model_path: Path, | |
command_path: str = None, | |
) -> list: | |
""" | |
A one-and done loader to try finding the desired models in specified directories. | |
@param download_name: Specify to download from model_url immediately. | |
@param model_url: If no other models are found, this will be downloaded on upscale. | |
@param model_path: The location to store/find models in. | |
@param command_path: A command-line argument to search for models in first. | |
@param ext_filter: An optional list of filename extensions to filter by | |
@return: A list of paths containing the desired model(s) | |
""" | |
output = [] | |
try: | |
places = [] | |
if command_path is not None and command_path != model_path: | |
pretrained_path = os.path.join(command_path, "experiments/pretrained_models") | |
if os.path.exists(pretrained_path): | |
print(f"Appending path: {pretrained_path}") | |
places.append(pretrained_path) | |
elif os.path.exists(command_path): | |
places.append(command_path) | |
places.append(model_path) | |
except Exception: | |
pass | |
return output | |
def mod2normal(state_dict): | |
# this code is copied from https://github.com/victorca25/iNNfer | |
if "conv_first.weight" in state_dict: | |
crt_net = {} | |
items = list(state_dict) | |
crt_net["model.0.weight"] = state_dict["conv_first.weight"] | |
crt_net["model.0.bias"] = state_dict["conv_first.bias"] | |
for k in items.copy(): | |
if "RDB" in k: | |
ori_k = k.replace("RRDB_trunk.", "model.1.sub.") | |
if ".weight" in k: | |
ori_k = ori_k.replace(".weight", ".0.weight") | |
elif ".bias" in k: | |
ori_k = ori_k.replace(".bias", ".0.bias") | |
crt_net[ori_k] = state_dict[k] | |
items.remove(k) | |
crt_net["model.1.sub.23.weight"] = state_dict["trunk_conv.weight"] | |
crt_net["model.1.sub.23.bias"] = state_dict["trunk_conv.bias"] | |
crt_net["model.3.weight"] = state_dict["upconv1.weight"] | |
crt_net["model.3.bias"] = state_dict["upconv1.bias"] | |
crt_net["model.6.weight"] = state_dict["upconv2.weight"] | |
crt_net["model.6.bias"] = state_dict["upconv2.bias"] | |
crt_net["model.8.weight"] = state_dict["HRconv.weight"] | |
crt_net["model.8.bias"] = state_dict["HRconv.bias"] | |
crt_net["model.10.weight"] = state_dict["conv_last.weight"] | |
crt_net["model.10.bias"] = state_dict["conv_last.bias"] | |
state_dict = crt_net | |
return state_dict | |
def resrgan2normal(state_dict, nb=23): | |
# this code is copied from https://github.com/victorca25/iNNfer | |
if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict: | |
re8x = 0 | |
crt_net = {} | |
items = list(state_dict) | |
crt_net["model.0.weight"] = state_dict["conv_first.weight"] | |
crt_net["model.0.bias"] = state_dict["conv_first.bias"] | |
for k in items.copy(): | |
if "rdb" in k: | |
ori_k = k.replace("body.", "model.1.sub.") | |
ori_k = ori_k.replace(".rdb", ".RDB") | |
if ".weight" in k: | |
ori_k = ori_k.replace(".weight", ".0.weight") | |
elif ".bias" in k: | |
ori_k = ori_k.replace(".bias", ".0.bias") | |
crt_net[ori_k] = state_dict[k] | |
items.remove(k) | |
crt_net[f"model.1.sub.{nb}.weight"] = state_dict["conv_body.weight"] | |
crt_net[f"model.1.sub.{nb}.bias"] = state_dict["conv_body.bias"] | |
crt_net["model.3.weight"] = state_dict["conv_up1.weight"] | |
crt_net["model.3.bias"] = state_dict["conv_up1.bias"] | |
crt_net["model.6.weight"] = state_dict["conv_up2.weight"] | |
crt_net["model.6.bias"] = state_dict["conv_up2.bias"] | |
if "conv_up3.weight" in state_dict: | |
# modification supporting: https://github.com/ai-forever/Real-ESRGAN/blob/main/RealESRGAN/rrdbnet_arch.py | |
re8x = 3 | |
crt_net["model.9.weight"] = state_dict["conv_up3.weight"] | |
crt_net["model.9.bias"] = state_dict["conv_up3.bias"] | |
crt_net[f"model.{8+re8x}.weight"] = state_dict["conv_hr.weight"] | |
crt_net[f"model.{8+re8x}.bias"] = state_dict["conv_hr.bias"] | |
crt_net[f"model.{10+re8x}.weight"] = state_dict["conv_last.weight"] | |
crt_net[f"model.{10+re8x}.bias"] = state_dict["conv_last.bias"] | |
state_dict = crt_net | |
return state_dict | |
def infer_params(state_dict): | |
# this code is copied from https://github.com/victorca25/iNNfer | |
scale2x = 0 | |
scalemin = 6 | |
n_uplayer = 0 | |
plus = False | |
for block in list(state_dict): | |
parts = block.split(".") | |
n_parts = len(parts) | |
if n_parts == 5 and parts[2] == "sub": | |
nb = int(parts[3]) | |
elif n_parts == 3: | |
part_num = int(parts[1]) | |
if part_num > scalemin and parts[0] == "model" and parts[2] == "weight": | |
scale2x += 1 | |
if part_num > n_uplayer: | |
n_uplayer = part_num | |
out_nc = state_dict[block].shape[0] | |
if not plus and "conv1x1" in block: | |
plus = True | |
nf = state_dict["model.0.weight"].shape[0] | |
in_nc = state_dict["model.0.weight"].shape[1] | |
out_nc = out_nc | |
scale = 2**scale2x | |
return in_nc, out_nc, nf, nb, plus, scale | |
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64 | |
Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"]) | |
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67 | |
def split_grid(image, tile_w=512, tile_h=512, overlap=64): | |
w = image.width | |
h = image.height | |
non_overlap_width = tile_w - overlap | |
non_overlap_height = tile_h - overlap | |
cols = math.ceil((w - overlap) / non_overlap_width) | |
rows = math.ceil((h - overlap) / non_overlap_height) | |
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0 | |
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0 | |
grid = Grid([], tile_w, tile_h, w, h, overlap) | |
for row in range(rows): | |
row_images = [] | |
y = int(row * dy) | |
if y + tile_h >= h: | |
y = h - tile_h | |
for col in range(cols): | |
x = int(col * dx) | |
if x + tile_w >= w: | |
x = w - tile_w | |
tile = image.crop((x, y, x + tile_w, y + tile_h)) | |
row_images.append([x, tile_w, tile]) | |
grid.tiles.append([y, tile_h, row_images]) | |
return grid | |
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104 | |
def combine_grid(grid): | |
def make_mask_image(r): | |
r = r * 255 / grid.overlap | |
r = r.astype(np.uint8) | |
return Image.fromarray(r, "L") | |
mask_w = make_mask_image( | |
np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0) | |
) | |
mask_h = make_mask_image( | |
np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1) | |
) | |
combined_image = Image.new("RGB", (grid.image_w, grid.image_h)) | |
for y, h, row in grid.tiles: | |
combined_row = Image.new("RGB", (grid.image_w, h)) | |
for x, w, tile in row: | |
if x == 0: | |
combined_row.paste(tile, (0, 0)) | |
continue | |
combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w) | |
combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0)) | |
if y == 0: | |
combined_image.paste(combined_row, (0, 0)) | |
continue | |
combined_image.paste( | |
combined_row.crop((0, 0, combined_row.width, grid.overlap)), | |
(0, y), | |
mask=mask_h, | |
) | |
combined_image.paste( | |
combined_row.crop((0, grid.overlap, combined_row.width, h)), | |
(0, y + grid.overlap), | |
) | |
return combined_image | |
class UpscalerESRGAN: | |
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype): | |
self.device = device | |
self.dtype = dtype | |
self.model_path = model_path | |
self.model = self.load_model(model_path) | |
def __call__(self, img: Image.Image) -> Image.Image: | |
return self.upscale_without_tiling(img) | |
def to(self, device: torch.device, dtype: torch.dtype): | |
self.device = device | |
self.dtype = dtype | |
self.model.to(device=device, dtype=dtype) | |
def load_model(self, path: Path) -> SRVGGNetCompact | RRDBNet: | |
filename = path | |
state_dict = torch.load(filename, weights_only=True, map_location=self.device) | |
if "params_ema" in state_dict: | |
state_dict = state_dict["params_ema"] | |
elif "params" in state_dict: | |
state_dict = state_dict["params"] | |
num_conv = 16 if "realesr-animevideov3" in filename else 32 | |
model = SRVGGNetCompact( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_conv=num_conv, | |
upscale=4, | |
act_type="prelu", | |
) | |
model.load_state_dict(state_dict) | |
model.eval() | |
return model | |
if "body.0.rdb1.conv1.weight" in state_dict and "conv_first.weight" in state_dict: | |
nb = 6 if "RealESRGAN_x4plus_anime_6B" in filename else 23 | |
state_dict = resrgan2normal(state_dict, nb) | |
elif "conv_first.weight" in state_dict: | |
state_dict = mod2normal(state_dict) | |
elif "model.0.weight" not in state_dict: | |
raise Exception("The file is not a recognized ESRGAN model.") | |
in_nc, out_nc, nf, nb, plus, mscale = infer_params(state_dict) | |
model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb, upscale=mscale, plus=plus) | |
model.load_state_dict(state_dict) | |
model.eval() | |
return model | |
def upscale_without_tiling(self, img: Image.Image) -> Image.Image: | |
img = np.array(img) | |
img = img[:, :, ::-1] | |
img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255 | |
img = torch.from_numpy(img).float() | |
img = img.unsqueeze(0).to(device=self.device, dtype=self.dtype) | |
with torch.no_grad(): | |
output = self.model(img) | |
output = output.squeeze().float().cpu().clamp_(0, 1).numpy() | |
output = 255.0 * np.moveaxis(output, 0, 2) | |
output = output.astype(np.uint8) | |
output = output[:, :, ::-1] | |
return Image.fromarray(output, "RGB") | |
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/esrgan_model.py#L208 | |
def upscale_with_tiling(self, img: Image.Image) -> Image.Image: | |
grid = split_grid(img) | |
newtiles = [] | |
scale_factor = 1 | |
for y, h, row in grid.tiles: | |
newrow = [] | |
for tiledata in row: | |
x, w, tile = tiledata | |
output = self.upscale_without_tiling(tile) | |
scale_factor = output.width // tile.width | |
newrow.append([x * scale_factor, w * scale_factor, output]) | |
newtiles.append([y * scale_factor, h * scale_factor, newrow]) | |
newgrid = Grid( | |
newtiles, | |
grid.tile_w * scale_factor, | |
grid.tile_h * scale_factor, | |
grid.image_w * scale_factor, | |
grid.image_h * scale_factor, | |
grid.overlap * scale_factor, | |
) | |
output = combine_grid(newgrid) | |
return output | |