Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from catboost import CatBoostClassifier | |
import torch.nn as nn | |
import streamlit as st | |
def load_model(): | |
catboost_model = CatBoostClassifier(random_seed=42,eval_metric='Accuracy') | |
catboost_model.load_model("pages/anti_toxic/dont_be_toxic.pt") | |
model_checkpoint = 'cointegrated/rubert-tiny-toxicity' | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) | |
model.classifier=nn.Dropout(0) | |
model.dropout = nn.Dropout(0) | |
return catboost_model, tokenizer, model | |
catboost_model, tokenizer, model = load_model() | |
def predict(text): | |
t=tokenizer(text, return_tensors='pt',truncation=True, padding=True) | |
with torch.no_grad(): | |
t = model(**t)[0].tolist()[0] | |
return catboost_model.predict_proba(t) |