import streamlit as st from PIL import Image st.title("NLP project") description_show_options = ['main','film_review','toxic_messages','GPT','над проектом работали'] description_show = st.sidebar.radio("Description", description_show_options) if description_show == 'над проектом работали': st.title(" над проектом работали") col1, col2, col3 = st.columns(3) with col1: romaimage = Image.open("images/roma.jpg") st.image(romaimage, caption="Рома | cosplayNet enjoyer | DevOps", use_column_width=True) with col2: leraimage = Image.open("images/Lera.png") st.image(leraimage, caption="Лера | UNet bender | Data Scientist", use_column_width=True) with col3: olyaimage = Image.open("images/olya.jpg") st.image(olyaimage, caption="Бауржан | streamlit master | Frontender", use_column_width=True) elif description_show == 'GPT': st.title("GPT") elif description_show == 'main': st.title("main") elif description_show == 'film_review': st.title("film_review") # Weighted F1-score: 0.7069352925929284 # Classification Report: # precision recall f1-score support # Bad 0.67 0.81 0.74 960 # Neutral 0.65 0.50 0.56 922 # Good 0.82 0.82 0.82 896 # accuracy 0.71 2778 # macro avg 0.71 0.71 0.71 2778 # weighted avg 0.71 0.71 0.71 2778 elif description_show == 'toxic_messages': st.title("toxic_messages")