Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,234 Bytes
5231633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import torch
from torch import nn
import numpy as np
import math
from .common import AttnBlock, LayerNorm2d, ResBlock, FeedForwardBlock, TimestepBlock
#from .controlnet import ControlNetDeliverer
class UpDownBlock2d(nn.Module):
def __init__(self, c_in, c_out, mode, enabled=True):
super().__init__()
assert mode in ['up', 'down']
interpolation = nn.Upsample(scale_factor=2 if mode == 'up' else 0.5, mode='bilinear',
align_corners=True) if enabled else nn.Identity()
mapping = nn.Conv2d(c_in, c_out, kernel_size=1)
self.blocks = nn.ModuleList([interpolation, mapping] if mode == 'up' else [mapping, interpolation])
def forward(self, x):
for block in self.blocks:
x = block(x.float())
return x
class StageC(nn.Module):
def __init__(self, c_in=16, c_out=16, c_r=64, patch_size=1, c_cond=2048, c_hidden=[2048, 2048], nhead=[32, 32],
blocks=[[8, 24], [24, 8]], block_repeat=[[1, 1], [1, 1]], level_config=['CTA', 'CTA'],
c_clip_text=1280, c_clip_text_pooled=1280, c_clip_img=768, c_clip_seq=4, kernel_size=3,
dropout=[0.1, 0.1], self_attn=True, t_conds=['sca', 'crp'], switch_level=[False]):
super().__init__()
self.c_r = c_r
self.t_conds = t_conds
self.c_clip_seq = c_clip_seq
if not isinstance(dropout, list):
dropout = [dropout] * len(c_hidden)
if not isinstance(self_attn, list):
self_attn = [self_attn] * len(c_hidden)
# CONDITIONING
self.clip_txt_mapper = nn.Linear(c_clip_text, c_cond)
self.clip_txt_pooled_mapper = nn.Linear(c_clip_text_pooled, c_cond * c_clip_seq)
self.clip_img_mapper = nn.Linear(c_clip_img, c_cond * c_clip_seq)
self.clip_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6)
self.embedding = nn.Sequential(
nn.PixelUnshuffle(patch_size),
nn.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1),
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6)
)
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
if block_type == 'C':
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout)
elif block_type == 'A':
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout)
elif block_type == 'F':
return FeedForwardBlock(c_hidden, dropout=dropout)
elif block_type == 'T':
return TimestepBlock(c_hidden, c_r, conds=t_conds)
else:
raise Exception(f'Block type {block_type} not supported')
# BLOCKS
# -- down blocks
self.down_blocks = nn.ModuleList()
self.down_downscalers = nn.ModuleList()
self.down_repeat_mappers = nn.ModuleList()
for i in range(len(c_hidden)):
if i > 0:
self.down_downscalers.append(nn.Sequential(
LayerNorm2d(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
UpDownBlock2d(c_hidden[i - 1], c_hidden[i], mode='down', enabled=switch_level[i - 1])
))
else:
self.down_downscalers.append(nn.Identity())
down_block = nn.ModuleList()
for _ in range(blocks[0][i]):
for block_type in level_config[i]:
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
down_block.append(block)
self.down_blocks.append(down_block)
if block_repeat is not None:
block_repeat_mappers = nn.ModuleList()
for _ in range(block_repeat[0][i] - 1):
block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1))
self.down_repeat_mappers.append(block_repeat_mappers)
# -- up blocks
self.up_blocks = nn.ModuleList()
self.up_upscalers = nn.ModuleList()
self.up_repeat_mappers = nn.ModuleList()
for i in reversed(range(len(c_hidden))):
if i > 0:
self.up_upscalers.append(nn.Sequential(
LayerNorm2d(c_hidden[i], elementwise_affine=False, eps=1e-6),
UpDownBlock2d(c_hidden[i], c_hidden[i - 1], mode='up', enabled=switch_level[i - 1])
))
else:
self.up_upscalers.append(nn.Identity())
up_block = nn.ModuleList()
for j in range(blocks[1][::-1][i]):
for k, block_type in enumerate(level_config[i]):
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i],
self_attn=self_attn[i])
up_block.append(block)
self.up_blocks.append(up_block)
if block_repeat is not None:
block_repeat_mappers = nn.ModuleList()
for _ in range(block_repeat[1][::-1][i] - 1):
block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1))
self.up_repeat_mappers.append(block_repeat_mappers)
# OUTPUT
self.clf = nn.Sequential(
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
nn.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1),
nn.PixelShuffle(patch_size),
)
# --- WEIGHT INIT ---
self.apply(self._init_weights) # General init
nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) # conditionings
nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02) # conditionings
nn.init.normal_(self.clip_img_mapper.weight, std=0.02) # conditionings
torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
nn.init.constant_(self.clf[1].weight, 0) # outputs
# blocks
for level_block in self.down_blocks + self.up_blocks:
for block in level_block:
if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
elif isinstance(block, TimestepBlock):
for layer in block.modules():
if isinstance(layer, nn.Linear):
nn.init.constant_(layer.weight, 0)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
torch.nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def gen_r_embedding(self, r, max_positions=10000):
r = r * max_positions
half_dim = self.c_r // 2
emb = math.log(max_positions) / (half_dim - 1)
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
emb = r[:, None] * emb[None, :]
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
if self.c_r % 2 == 1: # zero pad
emb = nn.functional.pad(emb, (0, 1), mode='constant')
return emb
def gen_c_embeddings(self, clip_txt, clip_txt_pooled, clip_img):
clip_txt = self.clip_txt_mapper(clip_txt)
if len(clip_txt_pooled.shape) == 2:
clip_txt_pool = clip_txt_pooled.unsqueeze(1)
if len(clip_img.shape) == 2:
clip_img = clip_img.unsqueeze(1)
clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.c_clip_seq, -1)
clip_img = self.clip_img_mapper(clip_img).view(clip_img.size(0), clip_img.size(1) * self.c_clip_seq, -1)
clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1)
clip = self.clip_norm(clip)
return clip
def _down_encode(self, x, r_embed, clip, cnet=None):
level_outputs = []
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
for down_block, downscaler, repmap in block_group:
x = downscaler(x)
for i in range(len(repmap) + 1):
for block in down_block:
if isinstance(block, ResBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
ResBlock)):
if cnet is not None:
next_cnet = cnet()
if next_cnet is not None:
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear',
align_corners=True)
x = block(x)
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
x = block(x, r_embed)
else:
x = block(x)
if i < len(repmap):
x = repmap[i](x)
level_outputs.insert(0, x)
return level_outputs
def _up_decode(self, level_outputs, r_embed, clip, cnet=None):
x = level_outputs[0]
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
for i, (up_block, upscaler, repmap) in enumerate(block_group):
for j in range(len(repmap) + 1):
for k, block in enumerate(up_block):
if isinstance(block, ResBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
ResBlock)):
skip = level_outputs[i] if k == 0 and i > 0 else None
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
x = torch.nn.functional.interpolate(x.float(), skip.shape[-2:], mode='bilinear',
align_corners=True)
if cnet is not None:
next_cnet = cnet()
if next_cnet is not None:
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear',
align_corners=True)
x = block(x, skip)
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
x = block(x, r_embed)
else:
x = block(x)
if j < len(repmap):
x = repmap[j](x)
x = upscaler(x)
return x
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, cnet=None, **kwargs):
# Process the conditioning embeddings
r_embed = self.gen_r_embedding(r)
for c in self.t_conds:
t_cond = kwargs.get(c, torch.zeros_like(r))
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond)], dim=1)
clip = self.gen_c_embeddings(clip_text, clip_text_pooled, clip_img)
# Model Blocks
x = self.embedding(x)
if cnet is not None:
cnet = ControlNetDeliverer(cnet)
level_outputs = self._down_encode(x, r_embed, clip, cnet)
x = self._up_decode(level_outputs, r_embed, clip, cnet)
return self.clf(x)
def update_weights_ema(self, src_model, beta=0.999):
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
|