Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import numpy as np | |
import torch | |
from torch import nn | |
from .common import AttnBlock, LayerNorm2d, ResBlock, FeedForwardBlock, TimestepBlock | |
class StageB(nn.Module): | |
def __init__(self, c_in=4, c_out=4, c_r=64, patch_size=2, c_cond=1280, c_hidden=[320, 640, 1280, 1280], | |
nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]], | |
block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]], level_config=['CT', 'CT', 'CTA', 'CTA'], c_clip=1280, | |
c_clip_seq=4, c_effnet=16, c_pixels=3, kernel_size=3, dropout=[0, 0, 0.1, 0.1], self_attn=True, | |
t_conds=['sca']): | |
super().__init__() | |
self.c_r = c_r | |
self.t_conds = t_conds | |
self.c_clip_seq = c_clip_seq | |
if not isinstance(dropout, list): | |
dropout = [dropout] * len(c_hidden) | |
if not isinstance(self_attn, list): | |
self_attn = [self_attn] * len(c_hidden) | |
# CONDITIONING | |
self.effnet_mapper = nn.Sequential( | |
nn.Conv2d(c_effnet, c_hidden[0] * 4, kernel_size=1), | |
nn.GELU(), | |
nn.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1), | |
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6) | |
) | |
self.pixels_mapper = nn.Sequential( | |
nn.Conv2d(c_pixels, c_hidden[0] * 4, kernel_size=1), | |
nn.GELU(), | |
nn.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1), | |
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6) | |
) | |
self.clip_mapper = nn.Linear(c_clip, c_cond * c_clip_seq) | |
self.clip_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6) | |
self.embedding = nn.Sequential( | |
nn.PixelUnshuffle(patch_size), | |
nn.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1), | |
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6) | |
) | |
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True): | |
if block_type == 'C': | |
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout) | |
elif block_type == 'A': | |
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout) | |
elif block_type == 'F': | |
return FeedForwardBlock(c_hidden, dropout=dropout) | |
elif block_type == 'T': | |
return TimestepBlock(c_hidden, c_r, conds=t_conds) | |
else: | |
raise Exception(f'Block type {block_type} not supported') | |
# BLOCKS | |
# -- down blocks | |
self.down_blocks = nn.ModuleList() | |
self.down_downscalers = nn.ModuleList() | |
self.down_repeat_mappers = nn.ModuleList() | |
for i in range(len(c_hidden)): | |
if i > 0: | |
self.down_downscalers.append(nn.Sequential( | |
LayerNorm2d(c_hidden[i - 1], elementwise_affine=False, eps=1e-6), | |
nn.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2), | |
)) | |
else: | |
self.down_downscalers.append(nn.Identity()) | |
down_block = nn.ModuleList() | |
for _ in range(blocks[0][i]): | |
for block_type in level_config[i]: | |
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i]) | |
down_block.append(block) | |
self.down_blocks.append(down_block) | |
if block_repeat is not None: | |
block_repeat_mappers = nn.ModuleList() | |
for _ in range(block_repeat[0][i] - 1): | |
block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1)) | |
self.down_repeat_mappers.append(block_repeat_mappers) | |
# -- up blocks | |
self.up_blocks = nn.ModuleList() | |
self.up_upscalers = nn.ModuleList() | |
self.up_repeat_mappers = nn.ModuleList() | |
for i in reversed(range(len(c_hidden))): | |
if i > 0: | |
self.up_upscalers.append(nn.Sequential( | |
LayerNorm2d(c_hidden[i], elementwise_affine=False, eps=1e-6), | |
nn.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2), | |
)) | |
else: | |
self.up_upscalers.append(nn.Identity()) | |
up_block = nn.ModuleList() | |
for j in range(blocks[1][::-1][i]): | |
for k, block_type in enumerate(level_config[i]): | |
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0 | |
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i], | |
self_attn=self_attn[i]) | |
up_block.append(block) | |
self.up_blocks.append(up_block) | |
if block_repeat is not None: | |
block_repeat_mappers = nn.ModuleList() | |
for _ in range(block_repeat[1][::-1][i] - 1): | |
block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1)) | |
self.up_repeat_mappers.append(block_repeat_mappers) | |
# OUTPUT | |
self.clf = nn.Sequential( | |
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6), | |
nn.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1), | |
nn.PixelShuffle(patch_size), | |
) | |
# --- WEIGHT INIT --- | |
self.apply(self._init_weights) # General init | |
nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings | |
nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings | |
nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings | |
nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings | |
nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings | |
torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs | |
nn.init.constant_(self.clf[1].weight, 0) # outputs | |
# blocks | |
for level_block in self.down_blocks + self.up_blocks: | |
for block in level_block: | |
if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock): | |
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0])) | |
elif isinstance(block, TimestepBlock): | |
for layer in block.modules(): | |
if isinstance(layer, nn.Linear): | |
nn.init.constant_(layer.weight, 0) | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv2d, nn.Linear)): | |
torch.nn.init.xavier_uniform_(m.weight) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def gen_r_embedding(self, r, max_positions=10000): | |
r = r * max_positions | |
half_dim = self.c_r // 2 | |
emb = math.log(max_positions) / (half_dim - 1) | |
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp() | |
emb = r[:, None] * emb[None, :] | |
emb = torch.cat([emb.sin(), emb.cos()], dim=1) | |
if self.c_r % 2 == 1: # zero pad | |
emb = nn.functional.pad(emb, (0, 1), mode='constant') | |
return emb | |
def gen_c_embeddings(self, clip): | |
if len(clip.shape) == 2: | |
clip = clip.unsqueeze(1) | |
clip = self.clip_mapper(clip).view(clip.size(0), clip.size(1) * self.c_clip_seq, -1) | |
clip = self.clip_norm(clip) | |
return clip | |
def _down_encode(self, x, r_embed, clip): | |
level_outputs = [] | |
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers) | |
for down_block, downscaler, repmap in block_group: | |
x = downscaler(x) | |
for i in range(len(repmap) + 1): | |
for block in down_block: | |
if isinstance(block, ResBlock) or ( | |
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, | |
ResBlock)): | |
x = block(x) | |
elif isinstance(block, AttnBlock) or ( | |
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, | |
AttnBlock)): | |
x = block(x, clip) | |
elif isinstance(block, TimestepBlock) or ( | |
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, | |
TimestepBlock)): | |
x = block(x, r_embed) | |
else: | |
x = block(x) | |
if i < len(repmap): | |
x = repmap[i](x) | |
level_outputs.insert(0, x) | |
return level_outputs | |
def _up_decode(self, level_outputs, r_embed, clip): | |
x = level_outputs[0] | |
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers) | |
for i, (up_block, upscaler, repmap) in enumerate(block_group): | |
for j in range(len(repmap) + 1): | |
for k, block in enumerate(up_block): | |
if isinstance(block, ResBlock) or ( | |
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, | |
ResBlock)): | |
skip = level_outputs[i] if k == 0 and i > 0 else None | |
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)): | |
x = torch.nn.functional.interpolate(x.float(), skip.shape[-2:], mode='bilinear', | |
align_corners=True) | |
x = block(x, skip) | |
elif isinstance(block, AttnBlock) or ( | |
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, | |
AttnBlock)): | |
x = block(x, clip) | |
elif isinstance(block, TimestepBlock) or ( | |
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module, | |
TimestepBlock)): | |
x = block(x, r_embed) | |
else: | |
x = block(x) | |
if j < len(repmap): | |
x = repmap[j](x) | |
x = upscaler(x) | |
return x | |
def forward(self, x, r, effnet, clip, pixels=None, **kwargs): | |
if pixels is None: | |
pixels = x.new_zeros(x.size(0), 3, 8, 8) | |
# Process the conditioning embeddings | |
r_embed = self.gen_r_embedding(r) | |
for c in self.t_conds: | |
t_cond = kwargs.get(c, torch.zeros_like(r)) | |
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond)], dim=1) | |
clip = self.gen_c_embeddings(clip) | |
# Model Blocks | |
x = self.embedding(x) | |
x = x + self.effnet_mapper( | |
nn.functional.interpolate(effnet.float(), size=x.shape[-2:], mode='bilinear', align_corners=True)) | |
x = x + nn.functional.interpolate(self.pixels_mapper(pixels).float(), size=x.shape[-2:], mode='bilinear', | |
align_corners=True) | |
level_outputs = self._down_encode(x, r_embed, clip) | |
x = self._up_decode(level_outputs, r_embed, clip) | |
return self.clf(x) | |
def update_weights_ema(self, src_model, beta=0.999): | |
for self_params, src_params in zip(self.parameters(), src_model.parameters()): | |
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta) | |
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()): | |
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta) | |