Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import onnx, onnx2torch, cv2 | |
import torch | |
from insightface.utils import face_align | |
class ArcFaceRecognizer: | |
def __init__(self, model_file=None, device='cpu', dtype=torch.float32): | |
assert model_file is not None | |
self.model_file = model_file | |
self.device = device | |
self.dtype = dtype | |
self.model = onnx2torch.convert(onnx.load(model_file)).to(device=device, dtype=dtype) | |
for param in self.model.parameters(): | |
param.requires_grad = False | |
self.model.eval() | |
self.input_mean = 127.5 | |
self.input_std = 127.5 | |
self.input_size = (112, 112) | |
self.input_shape = ['None', 3, 112, 112] | |
def get(self, img, face): | |
aimg = face_align.norm_crop(img, landmark=face.kps, image_size=self.input_size[0]) | |
face.embedding = self.get_feat(aimg).flatten() | |
return face.embedding | |
def compute_sim(self, feat1, feat2): | |
from numpy.linalg import norm | |
feat1 = feat1.ravel() | |
feat2 = feat2.ravel() | |
sim = np.dot(feat1, feat2) / (norm(feat1) * norm(feat2)) | |
return sim | |
def get_feat(self, imgs): | |
if not isinstance(imgs, list): | |
imgs = [imgs] | |
input_size = self.input_size | |
blob = cv2.dnn.blobFromImages(imgs, 1.0 / self.input_std, input_size, | |
(self.input_mean, self.input_mean, self.input_mean), swapRB=True) | |
blob_torch = torch.tensor(blob).to(device=self.device, dtype=self.dtype) | |
net_out = self.model(blob_torch) | |
return net_out[0].float().cpu() | |
def distance2bbox(points, distance, max_shape=None): | |
"""Decode distance prediction to bounding box. | |
Args: | |
points (Tensor): Shape (n, 2), [x, y]. | |
distance (Tensor): Distance from the given point to 4 | |
boundaries (left, top, right, bottom). | |
max_shape (tuple): Shape of the image. | |
Returns: | |
Tensor: Decoded bboxes. | |
""" | |
x1 = points[:, 0] - distance[:, 0] | |
y1 = points[:, 1] - distance[:, 1] | |
x2 = points[:, 0] + distance[:, 2] | |
y2 = points[:, 1] + distance[:, 3] | |
if max_shape is not None: | |
x1 = x1.clamp(min=0, max=max_shape[1]) | |
y1 = y1.clamp(min=0, max=max_shape[0]) | |
x2 = x2.clamp(min=0, max=max_shape[1]) | |
y2 = y2.clamp(min=0, max=max_shape[0]) | |
return np.stack([x1, y1, x2, y2], axis=-1) | |
def distance2kps(points, distance, max_shape=None): | |
"""Decode distance prediction to bounding box. | |
Args: | |
points (Tensor): Shape (n, 2), [x, y]. | |
distance (Tensor): Distance from the given point to 4 | |
boundaries (left, top, right, bottom). | |
max_shape (tuple): Shape of the image. | |
Returns: | |
Tensor: Decoded bboxes. | |
""" | |
preds = [] | |
for i in range(0, distance.shape[1], 2): | |
px = points[:, i % 2] + distance[:, i] | |
py = points[:, i % 2 + 1] + distance[:, i + 1] | |
if max_shape is not None: | |
px = px.clamp(min=0, max=max_shape[1]) | |
py = py.clamp(min=0, max=max_shape[0]) | |
preds.append(px) | |
preds.append(py) | |
return np.stack(preds, axis=-1) | |
class FaceDetector: | |
def __init__(self, model_file=None, dtype=torch.float32, device='cuda'): | |
self.model_file = model_file | |
self.taskname = 'detection' | |
self.center_cache = {} | |
self.nms_thresh = 0.4 | |
self.det_thresh = 0.5 | |
self.device = device | |
self.dtype = dtype | |
self.model = onnx2torch.convert(onnx.load(model_file)).to(device=device, dtype=dtype) | |
for param in self.model.parameters(): | |
param.requires_grad = False | |
self.model.eval() | |
input_shape = (320, 320) | |
self.input_size = input_shape | |
self.input_shape = input_shape | |
self.input_mean = 127.5 | |
self.input_std = 128.0 | |
self._anchor_ratio = 1.0 | |
self._num_anchors = 1 | |
self.fmc = 3 | |
self._feat_stride_fpn = [8, 16, 32] | |
self._num_anchors = 2 | |
self.use_kps = True | |
self.det_thresh = 0.5 | |
self.nms_thresh = 0.4 | |
def forward(self, img, threshold): | |
scores_list = [] | |
bboxes_list = [] | |
kpss_list = [] | |
input_size = tuple(img.shape[0:2][::-1]) | |
blob = cv2.dnn.blobFromImage(img, 1.0 / self.input_std, input_size, | |
(self.input_mean, self.input_mean, self.input_mean), swapRB=True) | |
blob_torch = torch.tensor(blob).to(device=self.device, dtype=self.dtype) | |
net_outs_torch = self.model(blob_torch) | |
# print(list(map(lambda x: x.shape, net_outs_torch))) | |
net_outs = list(map(lambda x: x.float().cpu().numpy(), net_outs_torch)) | |
input_height = blob.shape[2] | |
input_width = blob.shape[3] | |
fmc = self.fmc | |
for idx, stride in enumerate(self._feat_stride_fpn): | |
scores = net_outs[idx] | |
bbox_preds = net_outs[idx + fmc] | |
bbox_preds = bbox_preds * stride | |
if self.use_kps: | |
kps_preds = net_outs[idx + fmc * 2] * stride | |
height = input_height // stride | |
width = input_width // stride | |
K = height * width | |
key = (height, width, stride) | |
if key in self.center_cache: | |
anchor_centers = self.center_cache[key] | |
else: | |
# solution-1, c style: | |
# anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 ) | |
# for i in range(height): | |
# anchor_centers[i, :, 1] = i | |
# for i in range(width): | |
# anchor_centers[:, i, 0] = i | |
# solution-2: | |
# ax = np.arange(width, dtype=np.float32) | |
# ay = np.arange(height, dtype=np.float32) | |
# xv, yv = np.meshgrid(np.arange(width), np.arange(height)) | |
# anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32) | |
# solution-3: | |
anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32) | |
# print(anchor_centers.shape) | |
anchor_centers = (anchor_centers * stride).reshape((-1, 2)) | |
if self._num_anchors > 1: | |
anchor_centers = np.stack([anchor_centers] * self._num_anchors, axis=1).reshape((-1, 2)) | |
if len(self.center_cache) < 100: | |
self.center_cache[key] = anchor_centers | |
pos_inds = np.where(scores >= threshold)[0] | |
bboxes = distance2bbox(anchor_centers, bbox_preds) | |
pos_scores = scores[pos_inds] | |
pos_bboxes = bboxes[pos_inds] | |
scores_list.append(pos_scores) | |
bboxes_list.append(pos_bboxes) | |
if self.use_kps: | |
kpss = distance2kps(anchor_centers, kps_preds) | |
# kpss = kps_preds | |
kpss = kpss.reshape((kpss.shape[0], -1, 2)) | |
pos_kpss = kpss[pos_inds] | |
kpss_list.append(pos_kpss) | |
return scores_list, bboxes_list, kpss_list | |
def detect(self, img, input_size=None, max_num=0, metric='default'): | |
assert input_size is not None or self.input_size is not None | |
input_size = self.input_size if input_size is None else input_size | |
im_ratio = float(img.shape[0]) / img.shape[1] | |
model_ratio = float(input_size[1]) / input_size[0] | |
if im_ratio > model_ratio: | |
new_height = input_size[1] | |
new_width = int(new_height / im_ratio) | |
else: | |
new_width = input_size[0] | |
new_height = int(new_width * im_ratio) | |
det_scale = float(new_height) / img.shape[0] | |
resized_img = cv2.resize(img, (new_width, new_height)) | |
det_img = np.zeros((input_size[1], input_size[0], 3), dtype=np.uint8) | |
det_img[:new_height, :new_width, :] = resized_img | |
scores_list, bboxes_list, kpss_list = self.forward(det_img, self.det_thresh) | |
scores = np.vstack(scores_list) | |
scores_ravel = scores.ravel() | |
order = scores_ravel.argsort()[::-1] | |
bboxes = np.vstack(bboxes_list) / det_scale | |
if self.use_kps: | |
kpss = np.vstack(kpss_list) / det_scale | |
pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False) | |
pre_det = pre_det[order, :] | |
keep = self.nms(pre_det) | |
det = pre_det[keep, :] | |
if self.use_kps: | |
kpss = kpss[order, :, :] | |
kpss = kpss[keep, :, :] | |
else: | |
kpss = None | |
if max_num > 0 and det.shape[0] > max_num: | |
area = (det[:, 2] - det[:, 0]) * (det[:, 3] - | |
det[:, 1]) | |
img_center = img.shape[0] // 2, img.shape[1] // 2 | |
offsets = np.vstack([ | |
(det[:, 0] + det[:, 2]) / 2 - img_center[1], | |
(det[:, 1] + det[:, 3]) / 2 - img_center[0] | |
]) | |
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) | |
if metric == 'max': | |
values = area | |
else: | |
values = area - offset_dist_squared * 2.0 # some extra weight on the centering | |
bindex = np.argsort( | |
values)[::-1] # some extra weight on the centering | |
bindex = bindex[0:max_num] | |
det = det[bindex, :] | |
if kpss is not None: | |
kpss = kpss[bindex, :] | |
return det, kpss | |
def nms(self, dets): | |
thresh = self.nms_thresh | |
x1 = dets[:, 0] | |
y1 = dets[:, 1] | |
x2 = dets[:, 2] | |
y2 = dets[:, 3] | |
scores = dets[:, 4] | |
areas = (x2 - x1 + 1) * (y2 - y1 + 1) | |
order = scores.argsort()[::-1] | |
keep = [] | |
while order.size > 0: | |
i = order[0] | |
keep.append(i) | |
xx1 = np.maximum(x1[i], x1[order[1:]]) | |
yy1 = np.maximum(y1[i], y1[order[1:]]) | |
xx2 = np.minimum(x2[i], x2[order[1:]]) | |
yy2 = np.minimum(y2[i], y2[order[1:]]) | |
w = np.maximum(0.0, xx2 - xx1 + 1) | |
h = np.maximum(0.0, yy2 - yy1 + 1) | |
inter = w * h | |
ovr = inter / (areas[i] + areas[order[1:]] - inter) | |
inds = np.where(ovr <= thresh)[0] | |
order = order[inds + 1] | |
return keep | |