Spaces:
Sleeping
Sleeping
removed zero
Browse files
app.py
CHANGED
|
@@ -1,92 +1,91 @@
|
|
| 1 |
-
from diffusers import AutoPipelineForText2Image
|
| 2 |
-
import torch
|
| 3 |
-
import gradio as gr
|
| 4 |
-
import threading
|
| 5 |
-
import time;
|
| 6 |
-
from queue import Queue
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
image =
|
| 28 |
-
image = (
|
| 29 |
-
|
| 30 |
-
FinalImage
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
queue.put({'type':'
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
t
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
| 1 |
+
from diffusers import AutoPipelineForText2Image
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import threading
|
| 5 |
+
import time;
|
| 6 |
+
from queue import Queue
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# @spaces.GPU(duration=120)
|
| 10 |
+
def GenerateImage(prompt,steps,progress,model):
|
| 11 |
+
|
| 12 |
+
data = []
|
| 13 |
+
|
| 14 |
+
queue = Queue();
|
| 15 |
+
|
| 16 |
+
def StartThread():
|
| 17 |
+
|
| 18 |
+
pipe_txt2img = AutoPipelineForText2Image.from_pretrained(
|
| 19 |
+
model, torch_dtype=torch.float16, use_safetensors=True
|
| 20 |
+
).to("cuda")
|
| 21 |
+
|
| 22 |
+
vae = pipe_txt2img.vae
|
| 23 |
+
|
| 24 |
+
def latents_callback(i, t, latents):
|
| 25 |
+
latents = 1 / 0.18215 * latents
|
| 26 |
+
image = vae.decode(latents).sample[0]
|
| 27 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 28 |
+
image = image.cpu().permute(1, 2, 0).numpy()
|
| 29 |
+
FinalImage = pipe_txt2img.numpy_to_pil(image)
|
| 30 |
+
queue.put({'type':'image', 'image':FinalImage[0], 'step': i})
|
| 31 |
+
|
| 32 |
+
generator = torch.Generator(device="cpu").manual_seed(37)
|
| 33 |
+
FinalImage = pipe_txt2img(prompt, generator=generator, num_inference_steps=steps,callback=latents_callback, callback_steps=progress).images[0]
|
| 34 |
+
queue.put({'type':'image', 'image':FinalImage, 'step': steps+1})
|
| 35 |
+
queue.put({'type':'end'})
|
| 36 |
+
|
| 37 |
+
t = threading.Thread(target=StartThread)
|
| 38 |
+
t.start();
|
| 39 |
+
|
| 40 |
+
while True:
|
| 41 |
+
print("Waiting next item");
|
| 42 |
+
nextItem = queue.get()
|
| 43 |
+
|
| 44 |
+
if nextItem['type'] == 'end':
|
| 45 |
+
break;
|
| 46 |
+
|
| 47 |
+
Image = nextItem['image']
|
| 48 |
+
Step = nextItem['step']
|
| 49 |
+
yield [Image,Step];
|
| 50 |
+
|
| 51 |
+
print("Waiting thread finish...");
|
| 52 |
+
t.join()
|
| 53 |
+
|
| 54 |
+
print("Finished!");
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
with gr.Blocks() as demo:
|
| 59 |
+
gr.Markdown("""
|
| 60 |
+
This is a lab to demonstrate how we can implement a text-to-image generation using Gradio and Diffusers, showing the progress of each image produced at each step.
|
| 61 |
+
Type a prompt, choose the maximum number of steps and the frequency (in steps) at which progress is shown. You will see the diffusion process live!
|
| 62 |
+
""")
|
| 63 |
+
|
| 64 |
+
with gr.Row():
|
| 65 |
+
prompt = gr.Text(label="prompt");
|
| 66 |
+
TotalSteps = gr.Slider(label="Steps", minimum=1,maximum=150,value=10);
|
| 67 |
+
ProgressSteps = gr.Number(label="Progress steps", value = 2);
|
| 68 |
+
model = gr.Text(label="Model", value="dreamlike-art/dreamlike-photoreal-2.0")
|
| 69 |
+
|
| 70 |
+
with gr.Row():
|
| 71 |
+
with gr.Column():
|
| 72 |
+
btnRun = gr.Button(value="Run!");
|
| 73 |
+
btnStop = gr.Button(value="Stop!");
|
| 74 |
+
status = gr.Text(label="Current Step");
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
image = gr.Image();
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
GenerateEvent = btnRun.click( GenerateImage, [prompt,TotalSteps,ProgressSteps,model], [image,status] );
|
| 81 |
+
btnStop.click( None,None,None, cancels=[GenerateEvent] )
|
| 82 |
+
|
| 83 |
+
if __name__ == "__main__":
|
| 84 |
+
demo.launch(show_api=True)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
|
|
|