Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +5 -28
- requirements.txt +1 -2
app.py
CHANGED
@@ -1,44 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
import hopsworks
|
3 |
-
from sklearn.metrics import mean_absolute_error
|
4 |
|
5 |
project = hopsworks.login()
|
6 |
-
fs = project.get_feature_store()
|
7 |
-
|
8 |
-
monitor_fg = fs.get_feature_group(name="ny_elec_predictions", version=1)
|
9 |
-
history_df = monitor_fg.read()
|
10 |
-
latest_prediction = history_df.iloc[-1]
|
11 |
-
|
12 |
-
y_pred = history_df['prediction']
|
13 |
-
y_test = history_df['actual']
|
14 |
-
mean_error = mean_absolute_error(y_test, y_pred)
|
15 |
|
16 |
dataset_api = project.get_dataset_api()
|
17 |
dataset_api.download("Resources/images/df_ny_elec_recent.png", overwrite=True)
|
|
|
18 |
|
19 |
with gr.Blocks() as demo:
|
20 |
-
gr.Label("Today's prediction")
|
21 |
-
with gr.Row():
|
22 |
-
with gr.Column():
|
23 |
-
gr.Textbox(value="{}".format(latest_prediction['prediction_date']),
|
24 |
-
label="Prediction date")
|
25 |
-
with gr.Column():
|
26 |
-
gr.Textbox(value="{:.0f}MWh".format(latest_prediction['prediction']),
|
27 |
-
label="Predicted NY electricity demand")
|
28 |
with gr.Row():
|
29 |
with gr.Column():
|
30 |
-
gr.
|
31 |
-
|
32 |
-
with gr.Column():
|
33 |
-
gr.Textbox(value="{}MWh".format(latest_prediction['forecast_eia']),
|
34 |
-
label="EIA forecast")
|
35 |
-
gr.Label("Recent Prediction History")
|
36 |
-
with gr.Row():
|
37 |
with gr.Column():
|
|
|
38 |
input_img = gr.Image("df_ny_elec_recent.png", elem_id="recent-predictions")
|
39 |
-
|
40 |
-
gr.Textbox(label="MAE for historical predictions",
|
41 |
-
value="{:.0f}MWh".format(mean_error))
|
42 |
|
43 |
|
44 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import hopsworks
|
|
|
3 |
|
4 |
project = hopsworks.login()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
dataset_api = project.get_dataset_api()
|
7 |
dataset_api.download("Resources/images/df_ny_elec_recent.png", overwrite=True)
|
8 |
+
dataset_api.download("Resources/images/df_ny_elec_prediction.png", overwrite=True)
|
9 |
|
10 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
with gr.Row():
|
12 |
with gr.Column():
|
13 |
+
gr.Label("Today's prediction")
|
14 |
+
input_img = gr.Image("df_ny_elec_prediction.png", elem_id="latest-prediction")
|
|
|
|
|
|
|
|
|
|
|
15 |
with gr.Column():
|
16 |
+
gr.Label("Recent Prediction History")
|
17 |
input_img = gr.Image("df_ny_elec_recent.png", elem_id="recent-predictions")
|
18 |
+
# TODO: MAE plot
|
|
|
|
|
19 |
|
20 |
|
21 |
demo.launch()
|
requirements.txt
CHANGED
@@ -1,2 +1 @@
|
|
1 |
-
hopsworks
|
2 |
-
scikit-learn
|
|
|
1 |
+
hopsworks
|
|