import gradio as gr import pandas as pd from pandas.tseries.holiday import USFederalHolidayCalendar as calendar import hopsworks import joblib import datetime import os import requests project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("ny_elec_model", version=1) model_dir = model.download() model = joblib.load(model_dir + "/ny_elec_model.pkl") def predict(): today = get_date() temp = get_temp(today) df = pd.DataFrame({"date": [today], "temperature": [temp]}) df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True) df['day'] = df['date'].dt.dayofweek df['month'] = df['date'].dt.month holidays = calendar().holidays(start=df['date'].min(), end=df['date'].max()) df['holiday'] = df['date'].isin(holidays).astype(int) demand = model.predict(df.drop(columns=['date']))[0] return [today, temp, demand] def get_date(): today = datetime.datetime.today() return today.date() def get_temp(date): weather_api_key = os.environ.get('WEATHER_API_KEY') weather_url = ('http://api.weatherapi.com/v1/history.json' '?key={}' '&q=New%20York,%20USA' '&dt={}').format(weather_api_key, date) return requests.get(weather_url).json()['forecast']['forecastday'][0]['day']['avgtemp_c'] demo = gr.Interface( fn = predict, title = "NY Electricity Demand Prediction", description ="Daily NY Electricity Demand Prediction", allow_flagging = "never", inputs = [], outputs = [ gr.Textbox(label="Date"), gr.Textbox(label="Temperature forecast [℃]"), gr.Textbox(label="Predicted demand [MWh]"), ] ) # TODO: we have only the demand predictions for two days ago, so we have two options # - skip EIA demand forecast (no comparison) # - show prediction for two days ago demo.launch()