Spaces:
Runtime error
Runtime error
File size: 6,018 Bytes
7d61c0e cb7ed6d 7d61c0e cb7ed6d 47379d7 cb7ed6d 47379d7 cb7ed6d 08059d7 cb7ed6d 7d61c0e cb7ed6d 7d61c0e cb7ed6d 47379d7 cb7ed6d 47379d7 cb7ed6d 08059d7 cb7ed6d 7d61c0e cb7ed6d 7d61c0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import numpy as np
import torch
import matplotlib.pyplot as plt
from streamlit_image_coordinates import streamlit_image_coordinates
import streamlit as st
from PIL import Image
from transformers import SamModel, SamProcessor
import cv2
import os
# Define global constants
MAX_WIDTH = 700
# Define helpful functions
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=20):
pos_points = coords[labels==1]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='.', s=marker_size, edgecolor='white', linewidth=0.2)
def show_points_on_image(raw_image, input_point, ax, input_labels=None):
ax.imshow(raw_image)
input_point = np.array(input_point)
if input_labels is None:
labels = np.ones_like(input_point[:, 0])
else:
labels = np.array(input_labels)
show_points(input_point, labels, ax)
ax.axis('on')
# Get SAM
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
# Get uploaded files from user
scale = st.file_uploader('Upload Scale Image')
image = st.file_uploader('Upload Particle Image')
# Runs when scale image is uploaded
if scale:
scale_np = np.asarray(bytearray(scale.read()), dtype=np.uint8)
scale_np = cv2.imdecode(scale_np, 1)
# Save image if it isn't already saved
if not os.path.exists(scale.name):
with open(scale.name, "wb") as f:
f.write(scale.getbuffer())
scale_pil = Image.open(scale.name)
# Remove file when done
###os.remove(scale.name)
#inputs = processor(raw_image, return_tensors="pt").to(device)
inputs = processor(scale_np, return_tensors="pt").to(device)
image_embeddings = model.get_image_embeddings(inputs["pixel_values"])
scale_factor = scale_np.shape[1] / MAX_WIDTH # how many times larger scale_np is than the image shown for each dimension
#clicked_point = streamlit_image_coordinates(Image.open(scale.name), height=scale_np.shape[0] // scale_factor, width=MAX_WIDTH)
clicked_point = streamlit_image_coordinates(scale_pil, height=scale_np.shape[0] // scale_factor, width=MAX_WIDTH)
if clicked_point:
input_point_np = np.array([[clicked_point['x'], clicked_point['y']]]) * scale_factor
input_point_list = [input_point_np.astype(int).tolist()]
#inputs = processor(raw_image, input_points=input_point, return_tensors="pt").to(device)
inputs = processor(scale_np, input_points=input_point_list, return_tensors="pt").to(device)
inputs.pop("pixel_values", None)
inputs.update({"image_embeddings": image_embeddings})
with torch.no_grad():
outputs = model(**inputs)
masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
mask = torch.squeeze(masks[0])[0] # mask.shape: (1,x,y) --> (x,y)
mask = mask.to(torch.int)
input_label = np.array([1])
fig, ax = plt.subplots()
ax.imshow(scale_np)
show_mask(mask, ax)
#show_points_on_image(scale_np, input_point, input_label, ax)
show_points(input_point_np, input_label, ax)
ax.axis('off')
st.pyplot(fig)
# Get pixels per millimeter
pixels_per_unit = torch.sum(mask, axis=1)
pixels_per_unit = pixels_per_unit[pixels_per_unit > 0]
pixels_per_unit = torch.mean(pixels_per_unit, dtype=torch.float).item()
# Runs when image is uploaded
if image:
image_np = np.asarray(bytearray(image.read()), dtype=np.uint8)
image_np = cv2.imdecode(image_np, 1)
# Save image if it isn't already saved
if not os.path.exists(image.name):
with open(image.name, "wb") as f:
f.write(image.getbuffer())
image_pil = Image.open(image.name)
# Remove file when done
###os.remove(image.name)
#inputs = processor(raw_image, return_tensors="pt").to(device)
inputs = processor(image_np, return_tensors="pt").to(device)
image_embeddings = model.get_image_embeddings(inputs["pixel_values"])
scale_factor = image_np.shape[1] / MAX_WIDTH # how many times larger scale_np is than the image shown for each dimension
clicked_point = streamlit_image_coordinates(image_pil, height=image_np.shape[0] // scale_factor, width=MAX_WIDTH)
if clicked_point:
input_point_np = np.array([[clicked_point['x'], clicked_point['y']]]) * scale_factor
input_point_list = [input_point_np.astype(int).tolist()]
#inputs = processor(raw_image, input_points=input_point, return_tensors="pt").to(device)
inputs = processor(image_np, input_points=input_point_list, return_tensors="pt").to(device)
inputs.pop("pixel_values", None)
inputs.update({"image_embeddings": image_embeddings})
with torch.no_grad():
outputs = model(**inputs)
masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
mask = torch.squeeze(masks[0])[0] # mask.shape: (1,x,y) --> (x,y)
mask = mask.to(torch.int)
input_label = np.array([1])
fig, ax = plt.subplots()
ax.imshow(image_np)
show_mask(mask, ax)
#show_points_on_image(scale_np, input_point, input_label, ax)
show_points(input_point_np, input_label, ax)
ax.axis('off')
st.pyplot(fig)
# Get the area in square millimeters
st.write(f'Area: {torch.sum(mask, dtype=torch.float).item() / pixels_per_unit ** 2} mm^2') |