RAG / app.py
rtabrizi's picture
initial commit
aa4fa52
raw
history blame
5.94 kB
import streamlit as st
import torch
import numpy as np
import faiss
import PyPDF2
import os
from transformers import BertTokenizer, BertModel
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer, DPRQuestionEncoder, DPRQuestionEncoderTokenizer, BartForQuestionAnswering
from transformers import BartForConditionalGeneration, BartTokenizer, AutoTokenizer
from langchain.embeddings import HuggingFaceEmbeddings
from langchain import text_splitter
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader
device = torch.device("cpu")
if torch.cuda.is_available():
print("Training on GPU")
device = torch.device("cuda:0")
file_url = "https://arxiv.org/pdf/1706.03762.pdf"
file_path = "assets/attention.pdf"
if not os.path.exists('assets'):
os.mkdir('assets')
if not os.path.isfile(file_path):
os.system(f'curl -o {file_path} {file_url}')
else:
print("File already exists!")
class Retriever:
def __init__(self, file_path, device, context_model_name, question_model_name):
self.file_path = file_path
self.device = device
self.context_tokenizer = DPRContextEncoderTokenizer.from_pretrained(context_model_name)
self.context_model = DPRContextEncoder.from_pretrained(context_model_name).to(device)
self.question_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(question_model_name)
self.question_model = DPRQuestionEncoder.from_pretrained(question_model_name).to(device)
def token_len(self, text):
tokens = self.context_tokenizer.encode(text)
return len(tokens)
def extract_text_from_pdf(self, file_path):
with open(file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
text = ''
for page in reader.pages:
text += page.extract_text()
return text
def get_text(self):
with open(self.file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
text = ''
for page in reader.pages:
text += page.extract_text()
return text
def load_chunks(self):
self.text = self.extract_text_from_pdf(self.file_path)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=300,
chunk_overlap=20,
length_function=self.token_len,
separators=["\n\n", " ", ".", ""]
)
self.chunks = text_splitter.split_text(self.text)
def load_context_embeddings(self):
encoded_input = self.context_tokenizer(self.chunks, return_tensors='pt', padding=True, truncation=True, max_length=100).to(device)
with torch.no_grad():
model_output = self.context_model(**encoded_input)
self.token_embeddings = model_output.pooler_output.cpu().detach().numpy()
self.index = faiss.IndexFlatL2(self.token_embeddings.shape[1])
self.index.add(self.token_embeddings)
def retrieve_top_k(self, query_prompt, k=10):
encoded_query = self.question_tokenizer(query_prompt, return_tensors="pt", truncation=True, padding=True).to(device)
with torch.no_grad():
model_output = self.question_model(**encoded_query)
query_vector = model_output.pooler_output
query_vector_np = query_vector.cpu().numpy()
D, I = self.index.search(query_vector_np, k)
retrieved_texts = [self.chunks[i] for i in I[0]]
scores = [d for d in D[0]]
# print("Top 5 retrieved texts and their associated scores:")
# for idx, (text, score) in enumerate(zip(retrieved_texts, scores)):
# print(f"{idx + 1}. Text: {text} \n Score: {score:.4f}\n")
return retrieved_texts
class RAG:
def __init__(self,
file_path,
device,
context_model_name="facebook/dpr-ctx_encoder-multiset-base",
question_model_name="facebook/dpr-question_encoder-multiset-base",
generator_name="facebook/bart-large"):
# generator_name = "valhalla/bart-large-finetuned-squadv1"
# generator_name = "'vblagoje/bart_lfqa'"
generator_name = "a-ware/bart-squadv2"
self.generator_tokenizer = BartTokenizer.from_pretrained(generator_name)
self.generator_model = BartForConditionalGeneration.from_pretrained(generator_name).to(device)
self.retriever = Retriever(file_path, device, context_model_name, question_model_name)
self.retriever.load_chunks()
self.retriever.load_context_embeddings()
def get_answer(self, question, context):
input_text = "context: %s <question for context: %s </s>" % (context,question)
features = self.generator_tokenizer([input_text], return_tensors='pt')
out = self.generator_model.generate(input_ids=features['input_ids'].to(device), attention_mask=features['attention_mask'].to(device))
return self.generator_tokenizer.decode(out[0])
def query(self, question):
context = self.retriever.retrieve_top_k(question, k=5)
# input_text = question + " " + " ".join(context)
input_text = "answer: " + " ".join(context) + " " + question
print(input_text)
inputs = self.generator_tokenizer.encode(input_text, return_tensors='pt', max_length=1024, truncation=True).to(device)
outputs = self.generator_model.generate(inputs, max_length=150, min_length=2, length_penalty=2.0, num_beams=4, early_stopping=True)
answer = self.generator_tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
context_model_name="facebook/dpr-ctx_encoder-single-nq-base"
context_model_name="facebook/dpr-ctx_encoder-multiset-base"
question_model_name="facebook/dpr-question_encoder-multiset-base"
rag = RAG(file_path, device)
st.title("RAG Model Query Interface")
query = st.text_input("Enter your question:")
# If a query is given, get the answer
if query:
answer = rag.query(query)
st.write(f"Answer: {answer}")
if __name__ == "__main__":
# This is used when running locally. Can be removed if deploying to a server.
st.run()