ruanchaves's picture
fix: fix labels and modify examples
4a6f74b
raw
history blame
4.08 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from collections import Counter
article_string = "Author: <a href=\"https://huggingface.co/ruanchaves\">Ruan Chaves Rodrigues</a>. Read more about our <a href=\"https://github.com/ruanchaves/evaluation-portuguese-language-models\">research on the evaluation of Portuguese language models</a>."
app_title = "Question Answering (Respostas a Perguntas)"
app_description = """
This app determines if an answer is appropriate for a question. You can either introduce your own sentences by filling in "Question" and "Answer" or click on one of the example pairs provided below.
(Este aplicativo determina se uma resposta é apropriada para uma pergunta. Você pode introduzir suas próprias frases preenchendo "Question" e "Answer" ou clicar em um dos exemplos de pares fornecidos abaixo.)
"""
app_examples = [
["Qual a montanha mais alta do mundo?", "Monte Everest é a montanha mais alta do mundo."],
["Quais as duas línguas mais faladas no mundo?", "Leonardo da Vinci pintou a Mona Lisa."],
["Qual a personagem mais famosa de Maurício de Sousa?", "A personagem mais famosa de Mauricio de Sousa é a Mônica."],
]
output_textbox_component_description = """
Output will appear here once the app has finished analyzing the answer.
(A saída aparecerá aqui assim que o aplicativo terminar de analisar a resposta.)
"""
output_json_component_description = { "breakdown": """
This box presents a detailed breakdown of the evaluation for each model.
""",
"detalhamento": """
(Esta caixa apresenta um detalhamento da avaliação para cada modelo.)
""" }
score_descriptions = {
0: "Negative: The answer is not suitable for the provided question.",
1: "Positive: The answer is suitable for the provided question.",
}
score_descriptions_pt = {
0: "(Negativo: A resposta não é adequada para a pergunta fornecida.)",
1: "(Positivo: A resposta é adequada para a pergunta fornecida.)",
}
model_list = [
"ruanchaves/mdeberta-v3-base-faquad-nli",
"ruanchaves/bert-base-portuguese-cased-faquad-nli",
"ruanchaves/bert-large-portuguese-cased-faquad-nli",
]
user_friendly_name = {
"ruanchaves/mdeberta-v3-base-faquad-nli": "mDeBERTa-v3 (FaQuAD)",
"ruanchaves/bert-base-portuguese-cased-faquad-nli": "BERTimbau base (FaQuAD)",
"ruanchaves/bert-large-portuguese-cased-faquad-nli": "BERTimbau large (FaQuAD)",
}
model_array = []
for model_name in model_list:
row = {}
row["name"] = model_name
row["tokenizer"] = AutoTokenizer.from_pretrained(model_name)
row["model"] = AutoModelForSequenceClassification.from_pretrained(model_name)
model_array.append(row)
def most_frequent(array):
occurence_count = Counter(array)
return occurence_count.most_common(1)[0][0]
def predict(s1, s2):
scores = {}
for row in model_array:
name = user_friendly_name[row["name"]]
tokenizer = row["tokenizer"]
model = row["model"]
model_input = tokenizer(*([s1], [s2]), padding=True, return_tensors="pt")
with torch.no_grad():
output = model(**model_input)
score = output[0][0].argmax().item()
scores[name] = score
average_score = most_frequent(list(scores.values()))
description = score_descriptions[average_score]
description_pt = score_descriptions_pt[average_score]
final_description = description + "\n \n" + description_pt
for key, value in scores.items():
scores[key] = score_descriptions[value]
return final_description, scores
inputs = [
gr.inputs.Textbox(label="Question"),
gr.inputs.Textbox(label="Answer")
]
outputs = [
gr.Textbox(label="Evaluation", value=output_textbox_component_description),
gr.JSON(label="Results by model", value=output_json_component_description)
]
gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title=app_title,
description=app_description,
examples=app_examples,
article = article_string).launch()