RickyIG commited on
Commit
d07bb49
·
1 Parent(s): a066fb3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +321 -0
app.py ADDED
@@ -0,0 +1,321 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import openai
3
+ import sys
4
+ import re
5
+
6
+ import gradio as gr
7
+ from IPython import get_ipython
8
+ import json
9
+ import requests
10
+ from tenacity import retry, wait_random_exponential, stop_after_attempt
11
+ from IPython import get_ipython
12
+ # from termcolor import colored # doesn't actually work in Colab ¯\_(ツ)_/¯
13
+ import ast
14
+
15
+ GPT_MODEL = "gpt-3.5-turbo-1106"
16
+
17
+ openai.api_key = os.environ['OPENAI_API_KEY']
18
+
19
+ def exec_python(cell):
20
+ # result = 0
21
+ print(cell)
22
+ # print(type(cell))
23
+ # code = json.loads(cell)
24
+ # print(code)
25
+ # exec(code["cell"])
26
+ inputcode = cell
27
+ print(inputcode)
28
+ code = inputcode
29
+ # code_string = code["cell"]
30
+ local_namespace = {}
31
+ try:
32
+ exec(code, globals(), local_namespace)
33
+ except Exception as e:
34
+ return "Please figure and solve it step by step with explanation by yourself. Remember, you must give the correct answer!"
35
+ print(local_namespace)
36
+ if not local_namespace:
37
+ return "Please figure and solve it step by step with explanation by yourself. Remember, you must give the correct answer!"
38
+ else:
39
+ theanswers = local_namespace.values()
40
+ print(theanswers)
41
+ local_ans = list(theanswers)[-1]
42
+ print(local_ans)
43
+ return local_ans
44
+
45
+ # Now let's define the function specification:
46
+ functions = [
47
+ {
48
+ "name": "exec_python",
49
+ "description": "run python code and return the execution result.",
50
+ "parameters": {
51
+ "type": "object",
52
+ "properties": {
53
+ "cell": {
54
+ "type": "string",
55
+ "description": "Valid Python code to execute.",
56
+ }
57
+ },
58
+ "required": ["cell"],
59
+ },
60
+ },
61
+ ]
62
+
63
+ # In order to run these functions automatically, we should maintain a dictionary:
64
+ functions_dict = {
65
+ "exec_python": exec_python,
66
+ }
67
+
68
+ def openai_api_calculate_cost(usage,model):
69
+ pricing = {
70
+ # 'gpt-3.5-turbo-4k': {
71
+ # 'prompt': 0.0015,
72
+ # 'completion': 0.002,
73
+ # },
74
+ # 'gpt-3.5-turbo-16k': {
75
+ # 'prompt': 0.003,
76
+ # 'completion': 0.004,
77
+ # },
78
+ 'gpt-3.5-turbo-1106': {
79
+ 'prompt': 0.001,
80
+ 'completion': 0.002,
81
+ },
82
+ 'gpt-4-1106-preview': {
83
+ 'prompt': 0.01,
84
+ 'completion': 0.03,
85
+ },
86
+ 'gpt-4': {
87
+ 'prompt': 0.03,
88
+ 'completion': 0.06,
89
+ },
90
+ # 'gpt-4-32k': {
91
+ # 'prompt': 0.06,
92
+ # 'completion': 0.12,
93
+ # },
94
+ # 'text-embedding-ada-002-v2': {
95
+ # 'prompt': 0.0001,
96
+ # 'completion': 0.0001,
97
+ # }
98
+ }
99
+
100
+ try:
101
+ model_pricing = pricing[model]
102
+ except KeyError:
103
+ raise ValueError("Invalid model specified")
104
+
105
+ prompt_cost = usage['prompt_tokens'] * model_pricing['prompt'] / 1000
106
+ completion_cost = usage['completion_tokens'] * model_pricing['completion'] / 1000
107
+
108
+ total_cost = prompt_cost + completion_cost
109
+ print(f"\nTokens used: {usage['prompt_tokens']:,} prompt + {usage['completion_tokens']:,} completion = {usage['total_tokens']:,} tokens")
110
+ print(f"Total cost for {model}: ${total_cost:.4f}\n")
111
+
112
+ return total_cost
113
+
114
+
115
+ @retry(wait=wait_random_exponential(min=1, max=40), stop=stop_after_attempt(3))
116
+ def chat_completion_request(messages, model, functions=None, function_call=None, temperature=0.2, top_p=0.1):
117
+ """
118
+ This function sends a POST request to the OpenAI API to generate a chat completion.
119
+ Parameters:
120
+ - messages (list): A list of message objects. Each object should have a 'role' (either 'system', 'user', or 'assistant') and 'content'
121
+ (the content of the message).
122
+ - functions (list, optional): A list of function objects that describe the functions that the model can call.
123
+ - function_call (str or dict, optional): If it's a string, it can be either 'auto' (the model decides whether to call a function) or 'none'
124
+ (the model will not call a function). If it's a dict, it should describe the function to call.
125
+ - model (str): The ID of the model to use.
126
+ Returns:
127
+ - response (requests.Response): The response from the OpenAI API. If the request was successful, the response's JSON will contain the chat completion.
128
+ """
129
+
130
+ # Set up the headers for the API request
131
+ headers = {
132
+ "Content-Type": "application/json",
133
+ "Authorization": "Bearer " + openai.api_key,
134
+ }
135
+
136
+ # Set up the data for the API request
137
+ # json_data = {"model": model, "messages": messages}
138
+ # json_data = {"model": model, "messages": messages, "response_format":{"type": "json_object"}}
139
+ json_data = {"model": model, "messages": messages, "temperature": temperature, "top_p":top_p}
140
+
141
+ # If functions were provided, add them to the data
142
+ if functions is not None:
143
+ json_data.update({"functions": functions})
144
+
145
+ # If a function call was specified, add it to the data
146
+ if function_call is not None:
147
+ json_data.update({"function_call": function_call})
148
+
149
+ # Send the API request
150
+ try:
151
+ response = requests.post(
152
+ "https://api.openai.com/v1/chat/completions",
153
+ headers=headers,
154
+ json=json_data,
155
+ )
156
+ return response
157
+ except Exception as e:
158
+ print("Unable to generate ChatCompletion response")
159
+ print(f"Exception: {e}")
160
+ return e
161
+
162
+ def first_call(init_prompt, user_input, input_temperature, input_top_p, model_dropdown_1):
163
+ # Set up a conversation
164
+ messages = []
165
+ messages.append({"role": "system", "content": init_prompt})
166
+
167
+ # Write a user message that perhaps our function can handle...?
168
+ messages.append({"role": "user", "content": user_input})
169
+
170
+ # Generate a response
171
+ chat_response = chat_completion_request(
172
+ messages, model_dropdown_1, functions=functions, function_call='auto', temperature=float(input_temperature), top_p=float(input_top_p)
173
+ )
174
+
175
+
176
+ # Save the JSON to a variable
177
+
178
+ assistant_message = chat_response.json()["choices"][0]["message"]
179
+
180
+ # Append response to conversation
181
+ messages.append(assistant_message)
182
+
183
+ usage = chat_response.json()['usage']
184
+ cost1 = openai_api_calculate_cost(usage,model_dropdown_1)
185
+
186
+ finish_response_status = chat_response.json()["choices"][0]["finish_reason"]
187
+ # Let's see what we got back before continuing
188
+ return assistant_message, cost1, messages, finish_response_status
189
+
190
+ def is_valid_dict_string(s):
191
+ try:
192
+ ast.literal_eval(s)
193
+ return True
194
+ except (SyntaxError, ValueError):
195
+ return False
196
+
197
+ def function_call_process(assistant_message):
198
+ if assistant_message.get("function_call") != None:
199
+
200
+ # Retrieve the name of the relevant function
201
+ function_name = assistant_message["function_call"]["name"]
202
+
203
+ # Retrieve the arguments to send the function
204
+ # function_args = json.loads(assistant_message["function_call"]["arguments"], strict=False)
205
+
206
+ # if isinstance(assistant_message["function_call"]["arguments"], dict):
207
+ # arg_dict = json.loads(r"{jsonload}".format(jsonload=assistant_message["function_call"]["arguments"]), strict=False)
208
+ # else:
209
+ # arg_dict = {'cell': assistant_message["function_call"]["arguments"]}
210
+ # arg_dict = assistant_message["function_call"]["arguments"]
211
+ # print(function_args)
212
+
213
+ if is_valid_dict_string(assistant_message["function_call"]["arguments"])==True:
214
+ arg_dict = json.loads(r"{jsonload}".format(jsonload=assistant_message["function_call"]["arguments"]), strict=False)
215
+ arg_dict = arg_dict['cell']
216
+ print("arg_dict : " + arg_dict)
217
+ else:
218
+ arg_dict = assistant_message["function_call"]["arguments"]
219
+ print(arg_dict)
220
+
221
+ # Look up the function and call it with the provided arguments
222
+ result = functions_dict[function_name](arg_dict)
223
+ return result
224
+
225
+ # print(result)
226
+ def second_prompt_build(prompt, log):
227
+ prompt_second = prompt.format(ans = log)
228
+ # prompt_second = prompt % log
229
+ return prompt_second
230
+
231
+ def second_call(prompt, prompt_second, messages, model_dropdown_2, function_name = "exec_python"):
232
+ # Add a new message to the conversation with the function result
233
+ messages.append({
234
+ "role": "function",
235
+ "name": function_name,
236
+ "content": str(prompt_second), # Convert the result to a string
237
+ })
238
+
239
+ # Call the model again to generate a user-facing message based on the function result
240
+ chat_response = chat_completion_request(
241
+ messages, model_dropdown_2, functions=functions
242
+ )
243
+ print("second call : "+ str(chat_response.json()))
244
+ assistant_message = chat_response.json()["choices"][0]["message"]
245
+ messages.append(assistant_message)
246
+
247
+ usage = chat_response.json()['usage']
248
+ cost2 = openai_api_calculate_cost(usage,model_dropdown_2)
249
+
250
+ # Print the final conversation
251
+ # pretty_print_conversation(messages)
252
+ return assistant_message, cost2, messages
253
+
254
+ def format_math_in_sentence(sentence):
255
+ # Regular expression to find various math expressions
256
+ math_pattern = re.compile(r'\\[a-zA-Z]+\{[^\}]+\}|\\frac\{[^\}]+\}\{[^\}]+\}')
257
+
258
+ # Find all math expressions in the sentence
259
+ math_matches = re.findall(math_pattern, sentence)
260
+
261
+ # Wrap each math expression with Markdown formatting
262
+ for math_match in math_matches:
263
+ markdown_math = f"${math_match}$"
264
+ sentence = sentence.replace(math_match, markdown_math)
265
+
266
+ return sentence
267
+
268
+ def main_function(init_prompt, prompt, user_input,input_temperature_1, input_top_p_1, model_dropdown_1, model_dropdown_2):
269
+ first_call_result, cost1, messages, finish_response_status = first_call(init_prompt, user_input, input_temperature_1, input_top_p_1, model_dropdown_1)
270
+ print("finish_response_status "+finish_response_status)
271
+ print(messages)
272
+ if finish_response_status == 'stop':
273
+ function_call_process_result = "Tidak dipanggil"
274
+ second_prompt_build_result = "Tidak dipanggil"
275
+ second_call_result = {'status':'Tidak dipanggil'}
276
+ cost2 = 0
277
+ finalmessages = {'status':'Tidak dipanggil'}
278
+ finalcostresult = cost1
279
+ finalcostrpresult = finalcostresult * 15000
280
+ else:
281
+ function_call_process_result = function_call_process(first_call_result)
282
+ second_prompt_build_result = second_prompt_build(prompt, function_call_process_result)
283
+ second_call_result, cost2, finalmessages = second_call(second_prompt_build_result, function_call_process_result, messages, model_dropdown_2)
284
+ finalcostresult = cost1 + cost2
285
+ finalcostrpresult = finalcostresult * 15000
286
+ veryfinaloutput = format_math_in_sentence(str(finalmessages[-1].get("content", "")))
287
+ return first_call_result, function_call_process_result, second_prompt_build_result, second_call_result, cost1, cost2, finalmessages, finalcostresult, finalcostrpresult, veryfinaloutput
288
+
289
+ def gradio_function():
290
+ init_prompt = gr.Textbox(label="init_prompt (for 1st call)")
291
+ prompt = gr.Textbox(label="prompt (for 2nd call)")
292
+ user_input = gr.Textbox(label="User Input")
293
+ input_temperature_1 = gr.Textbox(label="temperature_1")
294
+ input_top_p_1 = gr.Textbox(label="top_p_1")
295
+ # input_temperature_2 = gr.Textbox(label="temperature_2")
296
+ # input_top_p_2 = gr.Textbox(label="top_p_2")
297
+ output_1st_call = gr.JSON(label="Assistant (output_1st_call)")
298
+ output_fc_call = gr.Textbox(label="Function Call (exec_python) Result (output_fc_call)")
299
+ output_fc_call_with_prompt = gr.Textbox(label="Building 2nd Prompt (output_fc_call_with_2nd_prompt)")
300
+ output_2nd_call = gr.JSON(label="Assistant (output_2nd_call_buat_user)")
301
+ cost = gr.Textbox(label="Cost 1")
302
+ cost2 = gr.Textbox(label="Cost 2")
303
+ finalcost = gr.Textbox(label="Final Cost ($)")
304
+ finalcostrp = gr.Textbox(label="Final Cost (Rp)")
305
+ finalmessages = gr.JSON(label="Final Messages")
306
+ model_dropdown_1 = gr.Dropdown(["gpt-4", "gpt-4-1106-preview", "gpt-3.5-turbo-1106"], label="Model 1", info="Pilih model 1!")
307
+ model_dropdown_2 = gr.Dropdown(["gpt-4", "gpt-4-1106-preview", "gpt-3.5-turbo-1106"], label="Model 2", info="Pilih model 2!")
308
+ prettieroutput = gr.Markdown()
309
+
310
+ iface = gr.Interface(
311
+ fn=main_function,
312
+ inputs=[init_prompt, prompt, user_input,input_temperature_1, input_top_p_1, model_dropdown_1, model_dropdown_2],
313
+ outputs=[output_1st_call, output_fc_call, output_fc_call_with_prompt, output_2nd_call, cost, cost2, finalmessages, finalcost, finalcostrp, prettieroutput],
314
+ title="Test",
315
+ description="Accuracy",
316
+ )
317
+
318
+ iface.launch(share=True, debug=True)
319
+
320
+ if __name__ == "__main__":
321
+ gradio_function()