Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,808 Bytes
785d10d 1389809 785d10d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "rubenroy/Geneva-12B-GCv2-5m"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
@spaces.GPU
def generate(message, chat_history, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=512, repetition_penalty=1.1):
messages = [
{"role": "system", "content": "You are a helpful assistant named Geneva, a 12 billion parameter Large Language Model, fine-tuned and trained by Ruben Roy. You have been trained with the GammaCorpus v2 dataset, a dataset filled with structured and filtered multi-turn conversations. This dataset was also made by Ruben Roy."}, # Attribution for Mistral removed to prevent unneccesary hallucinations.
]
for user, assistant in chat_history:
messages.append({"role": "user", "content": user})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
temperature=float(temperature),
top_p=float(top_p),
top_k=int(top_k),
max_new_tokens=int(max_new_tokens),
repetition_penalty=float(repetition_penalty),
do_sample=True if float(temperature) > 0 else False
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
TITLE_HTML = """
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css">
<style>
.model-btn {
background: linear-gradient(135deg, #059669 0%, #047857 100%);
color: white !important;
padding: 0.75rem 1rem;
border-radius: 0.5rem;
text-decoration: none !important;
font-weight: 500;
transition: all 0.2s ease;
font-size: 0.9rem;
display: flex;
align-items: center;
justify-content: center;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.model-btn:hover {
background: linear-gradient(135deg, #047857 0%, #065f46 100%);
box-shadow: 0 4px 6px rgba(0,0,0,0.2);
}
.model-section {
flex: 1;
max-width: 800px;
background: rgba(255, 255, 255, 0.05);
padding: 1.5rem;
border-radius: 1rem;
border: 1px solid rgba(255, 255, 255, 0.1);
backdrop-filter: blur(10px);
transition: all 0.3s ease;
}
.info-link {
color: #34d399;
text-decoration: none;
transition: color 0.2s ease;
}
.info-link:hover {
color: #6ee7b7;
text-decoration: underline;
}
.info-section {
margin-top: 0.5rem;
font-size: 0.9rem;
color: #94a3b8;
}
.settings-section {
background: rgba(255, 255, 255, 0.05);
padding: 1.5rem;
border-radius: 1rem;
margin: 1.5rem auto;
border: 1px solid rgba(255, 255, 255, 0.1);
max-width: 800px;
}
.settings-title {
color: #e2e8f0;
font-size: 1.25rem;
font-weight: 600;
margin-bottom: 1rem;
display: flex;
align-items: center;
gap: 0.7rem;
}
.parameter-info {
color: #94a3b8;
font-size: 0.8rem;
margin-top: 0.25rem;
}
</style>
<div style="background: linear-gradient(135deg, #064e3b 0%, #022c22 100%); padding: 1.5rem; border-radius: 1.5rem; text-align: center; margin: 1rem auto; max-width: 1200px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);">
<div style="margin-bottom: 1.5rem;">
<div style="display: flex; align-items: center; justify-content: center; gap: 1rem;">
<h1 style="font-size: 2.5rem; font-weight: 800; margin: 0; background: linear-gradient(135deg, #34d399 0%, #6ee7b7 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent;">Geneva</h1>
<div style="width: 2px; height: 2.5rem; background: linear-gradient(180deg, #059669 0%, #34d399 100%);"></div>
<p style="font-size: 1.25rem; color: #94a3b8; margin: 0;">GammaCorpus v2-5m</p>
</div>
<div class="info-section">
<span>Fine-tuned from <a href="https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407" class="info-link">Mistral NeMo Instruct 2407</a> | Model: <a href="https://huggingface.co/rubenroy/Geneva-14B-GCv2-5m" class="info-link">Geneva-14B-GCv2-5m</a> | Training Dataset: <a href="https://huggingface.co/datasets/rubenroy/GammaCorpus-v2-5m" class="info-link">GammaCorpus v2 5m</a></span>
</div>
</div>
<div style="display: flex; gap: 1.5rem; justify-content: center;">
<div class="model-section">
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;">
<i class="fa-solid fa-sparkles"></i>
Geneva Models
</h2>
<div style="display: grid; grid-auto-flow: column; gap: 0.75rem; overflow-x: auto; white-space: nowrap;">
<a href="https://huggingface.co/rubenroy/Geneva-12B-GCv2-5m" class="model-btn">Geneva 12B GCv2 5m</a>
<a href="https://huggingface.co/rubenroy/Geneva-12B-GCv2-1m" class="model-btn">Geneva 12B GCv2 1m</a>
<a href="https://huggingface.co/rubenroy/Geneva-12B-GCv2-500k" class="model-btn">Geneva 12B GCv2 500k</a>
<a href="https://huggingface.co/rubenroy/Geneva-12B-GCv2-100k" class="model-btn">Geneva 12B GCv2 100k</a>
<a href="https://huggingface.co/rubenroy/Geneva-12B-GCv2-50k" class="model-btn">Geneva 12B GCv2 50k</a>
<a href="https://huggingface.co/rubenroy/Geneva-12B-GCv2-10k" class="model-btn">Geneva 12B GCv2 10k</a>
</div>
</div>
</div>
</div>
"""
examples = [
["Explain deep learning in simple terms."],
["Write a short science fiction story."],
["Describe the laws of thermodynamics."],
["Write me a simple game in Python."]
]
with gr.Blocks() as demo:
gr.HTML(TITLE_HTML)
with gr.Accordion("Generation Settings", open=False):
with gr.Row():
with gr.Column():
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Higher values make the output more random, lower values make it more deterministic",
interactive=True
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.9,
step=0.05,
label="Top P",
info="Controls the cumulative probability threshold for nucleus sampling",
interactive=True
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="Top K",
info="Limits the number of tokens to consider for each generation step",
interactive=True
)
with gr.Column():
max_new_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max New Tokens",
info="Maximum number of tokens to generate in the response",
interactive=True
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition Penalty",
info="Higher values stop the model from repeating the same info",
interactive=True
)
chatbot = gr.ChatInterface(
fn=generate,
additional_inputs=[
temperature,
top_p,
top_k,
max_new_tokens,
repetition_penalty
],
examples=examples
)
demo.launch(share=True) |