import gradio as gr from fastai.vision.all import * #import skimage learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Liveness Classification" description = "Liveness classification using Adobe Antialiased model with fastai. Created as a demo for Gradio and HuggingFace Spaces." article= " " #"
" examples = ['modelo_cropped1.jpg'] interpretation='default' enable_queue=True gr.Interface(fn=predict,inputs=gr.inputs.Image(source="webcam",shape=(224, 224)),outputs=gr.outputs.Label(num_top_classes=2),title=title,description=description,article=article,enable_queue=enable_queue).launch()