import gradio as gr from speechbrain.pretrained import SepformerSeparation as separator import torchaudio # model = separator.from_hparams(source="speechbrain/sepformer-wham-enhancement", savedir='pretrained_models/sepformer-wham-enhancement') model = separator.from_hparams(source="speechbrain/sepformer-dns4-16k-enhancement", savedir='pretrained_models/sepformer-dns4-16k-enhancement') def predict_song(audio_path): est_sources = model.separate_file(path=audio_path) torchaudio.save("enhanced_wham.wav", est_sources[:, :, 0].detach().cpu(), 8000) return "enhanced_wham.wav" # Create title, description and article strings title = "Denoise Audio Using Sepformer" description = "Using SepFormer model implemented with SpeechBrain" article = "Tham khao Hunggingface [speechbrain/sepformer-wsj02mixt](https://huggingface.co/speechbrain/sepformer-wsj02mix)." # Create the Gradio demo demo = gr.Interface(fn=predict_song, # mapping function from input to output inputs=gr.Audio(type="filepath"), # what are the inputs? outputs=gr.File(file_count="multiple", file_types=[".wav"]), # our fn has two outputs, therefore we have two outputs title=title, description=description, article=article) # Launch the demo! demo.launch()