|
from speechbrain.inference.separation import SepformerSeparation as separator |
|
import torchaudio |
|
import gradio as gr |
|
|
|
model = separator.from_hparams(source="speechbrain/sepformer-wsj02mix", savedir='pretrained_models/sepformer-wsj02mix') |
|
|
|
def speechbrain(aud): |
|
est_sources = model.separate_file(path=aud) |
|
torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000) |
|
torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 8000) |
|
return "source1hat.wav", "source2hat.wav" |
|
|
|
|
|
title = "Speech Seperation" |
|
description = "Gradio demo for Speech Seperation by SpeechBrain. To use it, simply upload your audio, or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2010.13154' target='_blank'>Attention is All You Need in Speech Separation</a> | <a href='https://github.com/speechbrain/speechbrain/tree/develop/recipes/WSJ0Mix/separation' '_blank'>Github Repo</a></p>" |
|
examples = [ |
|
['samples_audio_samples_test_mixture.wav'] |
|
] |
|
|
|
demo = gr.Interface( |
|
fn=speechbrain, |
|
inputs=gr.Audio(type="filepath"), |
|
outputs=[ |
|
gr.Audio(label="Output Audio One", type="filepath"), |
|
gr.Audio(label="Output Audio Two", type="filepath") |
|
], |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples |
|
) |
|
demo.launch() |
|
|
|
|