File size: 9,670 Bytes
dfc1efe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import sys
import time
from dataclasses import dataclass, field
from fractions import Fraction
import torch as th
from torch import distributed, nn
from torch.nn.parallel.distributed import DistributedDataParallel
from .augment import FlipChannels, FlipSign, Remix, Shift
from .compressed import StemsSet, build_musdb_metadata, get_musdb_tracks
from .model import Demucs
from .parser import get_name, get_parser
from .raw import Rawset
from .tasnet import ConvTasNet
from .test import evaluate
from .train import train_model, validate_model
from .utils import human_seconds, load_model, save_model, sizeof_fmt
@dataclass
class SavedState:
metrics: list = field(default_factory=list)
last_state: dict = None
best_state: dict = None
optimizer: dict = None
def main():
parser = get_parser()
args = parser.parse_args()
name = get_name(parser, args)
print(f"Experiment {name}")
if args.musdb is None and args.rank == 0:
print(
"You must provide the path to the MusDB dataset with the --musdb flag. "
"To download the MusDB dataset, see https://sigsep.github.io/datasets/musdb.html.",
file=sys.stderr)
sys.exit(1)
eval_folder = args.evals / name
eval_folder.mkdir(exist_ok=True, parents=True)
args.logs.mkdir(exist_ok=True)
metrics_path = args.logs / f"{name}.json"
eval_folder.mkdir(exist_ok=True, parents=True)
args.checkpoints.mkdir(exist_ok=True, parents=True)
args.models.mkdir(exist_ok=True, parents=True)
if args.device is None:
device = "cpu"
if th.cuda.is_available():
device = "cuda"
else:
device = args.device
th.manual_seed(args.seed)
# Prevents too many threads to be started when running `museval` as it can be quite
# inefficient on NUMA architectures.
os.environ["OMP_NUM_THREADS"] = "1"
if args.world_size > 1:
if device != "cuda" and args.rank == 0:
print("Error: distributed training is only available with cuda device", file=sys.stderr)
sys.exit(1)
th.cuda.set_device(args.rank % th.cuda.device_count())
distributed.init_process_group(backend="nccl",
init_method="tcp://" + args.master,
rank=args.rank,
world_size=args.world_size)
checkpoint = args.checkpoints / f"{name}.th"
checkpoint_tmp = args.checkpoints / f"{name}.th.tmp"
if args.restart and checkpoint.exists():
checkpoint.unlink()
if args.test:
args.epochs = 1
args.repeat = 0
model = load_model(args.models / args.test)
elif args.tasnet:
model = ConvTasNet(audio_channels=args.audio_channels, samplerate=args.samplerate, X=args.X)
else:
model = Demucs(
audio_channels=args.audio_channels,
channels=args.channels,
context=args.context,
depth=args.depth,
glu=args.glu,
growth=args.growth,
kernel_size=args.kernel_size,
lstm_layers=args.lstm_layers,
rescale=args.rescale,
rewrite=args.rewrite,
sources=4,
stride=args.conv_stride,
upsample=args.upsample,
samplerate=args.samplerate
)
model.to(device)
if args.show:
print(model)
size = sizeof_fmt(4 * sum(p.numel() for p in model.parameters()))
print(f"Model size {size}")
return
optimizer = th.optim.Adam(model.parameters(), lr=args.lr)
try:
saved = th.load(checkpoint, map_location='cpu')
except IOError:
saved = SavedState()
else:
model.load_state_dict(saved.last_state)
optimizer.load_state_dict(saved.optimizer)
if args.save_model:
if args.rank == 0:
model.to("cpu")
model.load_state_dict(saved.best_state)
save_model(model, args.models / f"{name}.th")
return
if args.rank == 0:
done = args.logs / f"{name}.done"
if done.exists():
done.unlink()
if args.augment:
augment = nn.Sequential(FlipSign(), FlipChannels(), Shift(args.data_stride),
Remix(group_size=args.remix_group_size)).to(device)
else:
augment = Shift(args.data_stride)
if args.mse:
criterion = nn.MSELoss()
else:
criterion = nn.L1Loss()
# Setting number of samples so that all convolution windows are full.
# Prevents hard to debug mistake with the prediction being shifted compared
# to the input mixture.
samples = model.valid_length(args.samples)
print(f"Number of training samples adjusted to {samples}")
if args.raw:
train_set = Rawset(args.raw / "train",
samples=samples + args.data_stride,
channels=args.audio_channels,
streams=[0, 1, 2, 3, 4],
stride=args.data_stride)
valid_set = Rawset(args.raw / "valid", channels=args.audio_channels)
else:
if not args.metadata.is_file() and args.rank == 0:
build_musdb_metadata(args.metadata, args.musdb, args.workers)
if args.world_size > 1:
distributed.barrier()
metadata = json.load(open(args.metadata))
duration = Fraction(samples + args.data_stride, args.samplerate)
stride = Fraction(args.data_stride, args.samplerate)
train_set = StemsSet(get_musdb_tracks(args.musdb, subsets=["train"], split="train"),
metadata,
duration=duration,
stride=stride,
samplerate=args.samplerate,
channels=args.audio_channels)
valid_set = StemsSet(get_musdb_tracks(args.musdb, subsets=["train"], split="valid"),
metadata,
samplerate=args.samplerate,
channels=args.audio_channels)
best_loss = float("inf")
for epoch, metrics in enumerate(saved.metrics):
print(f"Epoch {epoch:03d}: "
f"train={metrics['train']:.8f} "
f"valid={metrics['valid']:.8f} "
f"best={metrics['best']:.4f} "
f"duration={human_seconds(metrics['duration'])}")
best_loss = metrics['best']
if args.world_size > 1:
dmodel = DistributedDataParallel(model,
device_ids=[th.cuda.current_device()],
output_device=th.cuda.current_device())
else:
dmodel = model
for epoch in range(len(saved.metrics), args.epochs):
begin = time.time()
model.train()
train_loss = train_model(epoch,
train_set,
dmodel,
criterion,
optimizer,
augment,
batch_size=args.batch_size,
device=device,
repeat=args.repeat,
seed=args.seed,
workers=args.workers,
world_size=args.world_size)
model.eval()
valid_loss = validate_model(epoch,
valid_set,
model,
criterion,
device=device,
rank=args.rank,
split=args.split_valid,
world_size=args.world_size)
duration = time.time() - begin
if valid_loss < best_loss:
best_loss = valid_loss
saved.best_state = {
key: value.to("cpu").clone()
for key, value in model.state_dict().items()
}
saved.metrics.append({
"train": train_loss,
"valid": valid_loss,
"best": best_loss,
"duration": duration
})
if args.rank == 0:
json.dump(saved.metrics, open(metrics_path, "w"))
saved.last_state = model.state_dict()
saved.optimizer = optimizer.state_dict()
if args.rank == 0 and not args.test:
th.save(saved, checkpoint_tmp)
checkpoint_tmp.rename(checkpoint)
print(f"Epoch {epoch:03d}: "
f"train={train_loss:.8f} valid={valid_loss:.8f} best={best_loss:.4f} "
f"duration={human_seconds(duration)}")
del dmodel
model.load_state_dict(saved.best_state)
if args.eval_cpu:
device = "cpu"
model.to(device)
model.eval()
evaluate(model,
args.musdb,
eval_folder,
rank=args.rank,
world_size=args.world_size,
device=device,
save=args.save,
split=args.split_valid,
shifts=args.shifts,
workers=args.eval_workers)
model.to("cpu")
save_model(model, args.models / f"{name}.th")
if args.rank == 0:
print("done")
done.write_text("done")
if __name__ == "__main__":
main()
|