File size: 11,529 Bytes
6bcacf9
8c39361
 
 
 
 
 
6bcacf9
 
 
 
8c39361
 
 
 
 
 
 
 
 
 
6bcacf9
8c39361
 
 
6bcacf9
8c39361
6bcacf9
8c39361
6bcacf9
 
8c39361
6bcacf9
 
8c39361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bcacf9
 
 
 
 
 
 
 
8c39361
6bcacf9
8c39361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bcacf9
8c39361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bcacf9
8c39361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bcacf9
 
 
 
 
 
 
8c39361
 
 
6bcacf9
 
 
4968f12
 
8c39361
 
 
 
 
 
 
 
 
6bcacf9
 
8c39361
 
 
6bcacf9
 
8c39361
 
6bcacf9
8c39361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bcacf9
 
 
8c39361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bcacf9
 
8c39361
 
 
 
 
 
 
 
 
 
 
 
 
6bcacf9
 
 
 
 
 
8c39361
6bcacf9
 
 
 
 
 
 
8c39361
6bcacf9
 
 
 
8c39361
6bcacf9
 
 
 
 
 
 
 
 
8c39361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bcacf9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
from typing import Any
from diffusers import (
    DiffusionPipeline,
    AutoencoderTiny,
    LCMScheduler,
    UNet2DConditionModel,
)
from os import path
import torch
from backend.models.lcmdiffusion_setting import LCMDiffusionSetting
import numpy as np
from constants import (
    DEVICE,
    LCM_DEFAULT_MODEL,
    TAESD_MODEL,
    TAESDXL_MODEL,
    TAESD_MODEL_OPENVINO,
)
from huggingface_hub import model_info
from backend.models.lcmdiffusion_setting import LCMLora
from backend.device import is_openvino_device

if is_openvino_device():
    from huggingface_hub import snapshot_download
    from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel

    # from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline
    from backend.lcmdiffusion.pipelines.openvino.lcm_ov_pipeline import (
        OVStableDiffusionPipeline,
    )
    from backend.lcmdiffusion.pipelines.openvino.lcm_scheduler import (
        LCMScheduler as OpenVinoLCMscheduler,
    )

    class CustomOVModelVaeDecoder(OVModelVaeDecoder):
        def __init__(
            self,
            model,
            parent_model,
            ov_config=None,
            model_dir=None,
        ):
            super(OVModelVaeDecoder, self).__init__(
                model,
                parent_model,
                ov_config,
                "vae_decoder",
                model_dir,
            )


class LCMTextToImage:
    def __init__(
        self,
        device: str = "cpu",
    ) -> None:
        self.pipeline = None
        self.use_openvino = False
        self.device = ""
        self.previous_model_id = None
        self.previous_use_tae_sd = False
        self.previous_use_lcm_lora = False
        self.torch_data_type = (
            torch.float32 if is_openvino_device() or DEVICE == "mps" else torch.float16
        )
        print(f"Torch datatype : {self.torch_data_type}")

    def _get_lcm_pipeline(
        self,
        lcm_model_id: str,
        base_model_id: str,
        use_local_model: bool,
    ):
        pipeline = None
        unet = UNet2DConditionModel.from_pretrained(
            lcm_model_id,
            torch_dtype=torch.float32,
            local_files_only=use_local_model
            # resume_download=True,
        )
        pipeline = DiffusionPipeline.from_pretrained(
            base_model_id,
            unet=unet,
            torch_dtype=torch.float32,
            local_files_only=use_local_model
            # resume_download=True,
        )
        pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
        return pipeline

    def get_tiny_decoder_vae_model(self) -> str:
        pipeline_class = self.pipeline.__class__.__name__
        print(f"Pipeline class : {pipeline_class}")
        if (
            pipeline_class == "LatentConsistencyModelPipeline"
            or pipeline_class == "StableDiffusionPipeline"
        ):
            return TAESD_MODEL
        elif pipeline_class == "StableDiffusionXLPipeline":
            return TAESDXL_MODEL
        elif pipeline_class == "OVStableDiffusionPipeline":
            return TAESD_MODEL_OPENVINO

    def _get_lcm_model_pipeline(
        self,
        model_id: str,
        use_local_model,
    ):
        pipeline = None
        if model_id == LCM_DEFAULT_MODEL:
            pipeline = DiffusionPipeline.from_pretrained(
                model_id,
                local_files_only=use_local_model,
            )
        elif model_id == "latent-consistency/lcm-sdxl":
            pipeline = self._get_lcm_pipeline(
                model_id,
                "stabilityai/stable-diffusion-xl-base-1.0",
                use_local_model,
            )

        elif model_id == "latent-consistency/lcm-ssd-1b":
            pipeline = self._get_lcm_pipeline(
                model_id,
                "segmind/SSD-1B",
                use_local_model,
            )
        return pipeline

    def _get_lcm_lora_pipeline(
        self,
        base_model_id: str,
        lcm_lora_id: str,
        use_local_model: bool,
    ):
        pipeline = DiffusionPipeline.from_pretrained(
            base_model_id,
            torch_dtype=self.torch_data_type,
            local_files_only=use_local_model,
        )
        pipeline.load_lora_weights(
            lcm_lora_id,
            local_files_only=use_local_model,
        )

        pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)

        pipeline.fuse_lora()
        pipeline.unet.to(memory_format=torch.channels_last)
        return pipeline

    def _pipeline_to_device(self):
        print(f"Pipeline device : {DEVICE}")
        print(f"Pipeline dtype : {self.torch_data_type}")
        self.pipeline.to(
            torch_device=DEVICE,
            torch_dtype=self.torch_data_type,
        )

    def _add_freeu(self):
        pipeline_class = self.pipeline.__class__.__name__
        if pipeline_class == "StableDiffusionPipeline":
            print("Add FreeU - SD")
            self.pipeline.enable_freeu(
                s1=0.9,
                s2=0.2,
                b1=1.2,
                b2=1.4,
            )
        elif pipeline_class == "StableDiffusionXLPipeline":
            print("Add FreeU - SDXL")
            self.pipeline.enable_freeu(
                s1=0.6,
                s2=0.4,
                b1=1.1,
                b2=1.2,
            )

    def init(
        self,
        model_id: str,
        use_openvino: bool = False,
        device: str = "cpu",
        use_local_model: bool = False,
        use_tiny_auto_encoder: bool = False,
        use_lora: bool = False,
        lcm_lora: LCMLora = LCMLora(),
    ) -> None:
        self.device = device
        self.use_openvino = use_openvino
        print(f"use_openvino {self.use_openvino}")
        print(f"is_openvino {is_openvino_device()}")
        if (
            self.pipeline is None
            or self.previous_model_id != model_id
            or self.previous_use_tae_sd != use_tiny_auto_encoder
            or self.previous_lcm_lora_base_id != lcm_lora.base_model_id
            or self.previous_lcm_lora_id != lcm_lora.lcm_lora_id
            or self.previous_use_lcm_lora != use_lora
        ):
            if self.use_openvino and is_openvino_device():
                if self.pipeline:
                    del self.pipeline
                    self.pipeline = None

                self.pipeline = OVStableDiffusionPipeline.from_pretrained(
                    model_id,
                    local_files_only=use_local_model,
                    ov_config={"CACHE_DIR": ""},
                    device=DEVICE.upper(),
                )

                if use_tiny_auto_encoder:
                    print("Using Tiny Auto Encoder (OpenVINO)")
                    taesd_dir = snapshot_download(
                        repo_id=self.get_tiny_decoder_vae_model(),
                        local_files_only=use_local_model,
                    )
                    self.pipeline.vae_decoder = CustomOVModelVaeDecoder(
                        model=OVBaseModel.load_model(
                            f"{taesd_dir}/vae_decoder/openvino_model.xml"
                        ),
                        parent_model=self.pipeline,
                        model_dir=taesd_dir,
                    )

            else:
                if self.pipeline:
                    del self.pipeline
                    self.pipeline = None

                if use_lora:
                    print("Init LCM-LoRA pipeline")
                    self.pipeline = self._get_lcm_lora_pipeline(
                        lcm_lora.base_model_id,
                        lcm_lora.lcm_lora_id,
                        use_local_model,
                    )
                else:
                    print("Init LCM Model pipeline")
                    self.pipeline = self._get_lcm_model_pipeline(
                        model_id,
                        use_local_model,
                    )

                if use_tiny_auto_encoder:
                    vae_model = self.get_tiny_decoder_vae_model()
                    print(f"Using Tiny Auto Encoder {vae_model}")
                    self.pipeline.vae = AutoencoderTiny.from_pretrained(
                        vae_model,
                        torch_dtype=torch.float32,
                        local_files_only=use_local_model,
                    )

                self._pipeline_to_device()

            self.previous_model_id = model_id
            self.previous_use_tae_sd = use_tiny_auto_encoder
            self.previous_lcm_lora_base_id = lcm_lora.base_model_id
            self.previous_lcm_lora_id = lcm_lora.lcm_lora_id
            self.previous_use_lcm_lora = use_lora
            print(f"Model :{model_id}")
            print(f"Pipeline : {self.pipeline}")
            self.pipeline.scheduler = LCMScheduler.from_config(
                self.pipeline.scheduler.config,
                beta_start=0.001,
                beta_end=0.01,
            )
            if use_lora:
                self._add_freeu()

    def generate(
        self,
        lcm_diffusion_setting: LCMDiffusionSetting,
        reshape: bool = False,
    ) -> Any:
        guidance_scale = lcm_diffusion_setting.guidance_scale
        if lcm_diffusion_setting.use_seed:
            cur_seed = lcm_diffusion_setting.seed
            if self.use_openvino:
                np.random.seed(cur_seed)
            else:
                torch.manual_seed(cur_seed)

        if lcm_diffusion_setting.use_openvino and is_openvino_device():
            print("Using OpenVINO")
            if reshape:
                print("Reshape and compile")
                self.pipeline.reshape(
                    batch_size=-1,
                    height=lcm_diffusion_setting.image_height,
                    width=lcm_diffusion_setting.image_width,
                    num_images_per_prompt=lcm_diffusion_setting.number_of_images,
                )
                self.pipeline.compile()

        if not lcm_diffusion_setting.use_safety_checker:
            self.pipeline.safety_checker = None

        if (
            not lcm_diffusion_setting.use_lcm_lora
            and not lcm_diffusion_setting.use_openvino
            and lcm_diffusion_setting.guidance_scale != 1.0
        ):
            print("Not using LCM-LoRA so setting guidance_scale 1.0")
            guidance_scale = 1.0

        if lcm_diffusion_setting.use_openvino:
            result_images = self.pipeline(
                prompt=lcm_diffusion_setting.prompt,
                negative_prompt=lcm_diffusion_setting.negative_prompt,
                num_inference_steps=lcm_diffusion_setting.inference_steps,
                guidance_scale=guidance_scale,
                width=lcm_diffusion_setting.image_width,
                height=lcm_diffusion_setting.image_height,
                num_images_per_prompt=lcm_diffusion_setting.number_of_images,
            ).images
        else:
            result_images = self.pipeline(
                prompt=lcm_diffusion_setting.prompt,
                negative_prompt=lcm_diffusion_setting.negative_prompt,
                num_inference_steps=lcm_diffusion_setting.inference_steps,
                guidance_scale=guidance_scale,
                width=lcm_diffusion_setting.image_width,
                height=lcm_diffusion_setting.image_height,
                num_images_per_prompt=lcm_diffusion_setting.number_of_images,
            ).images

        return result_images