Spaces:
Running
Running
File size: 11,425 Bytes
6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 8c39361 6bcacf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
from typing import Any
from diffusers import (
DiffusionPipeline,
AutoencoderTiny,
LCMScheduler,
UNet2DConditionModel,
)
from os import path
import torch
from backend.models.lcmdiffusion_setting import LCMDiffusionSetting
import numpy as np
from constants import (
DEVICE,
LCM_DEFAULT_MODEL,
TAESD_MODEL,
TAESDXL_MODEL,
TAESD_MODEL_OPENVINO,
)
from huggingface_hub import model_info
from backend.models.lcmdiffusion_setting import LCMLora
from backend.device import is_openvino_device
if is_openvino_device():
from huggingface_hub import snapshot_download
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel
# from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline
from backend.lcmdiffusion.pipelines.openvino.lcm_ov_pipeline import (
OVStableDiffusionPipeline,
)
from backend.lcmdiffusion.pipelines.openvino.lcm_scheduler import (
LCMScheduler as OpenVinoLCMscheduler,
)
class CustomOVModelVaeDecoder(OVModelVaeDecoder):
def __init__(
self,
model,
parent_model,
ov_config=None,
model_dir=None,
):
super(OVModelVaeDecoder, self).__init__(
model,
parent_model,
ov_config,
"vae_decoder",
model_dir,
)
class LCMTextToImage:
def __init__(
self,
device: str = "cpu",
) -> None:
self.pipeline = None
self.use_openvino = False
self.device = ""
self.previous_model_id = None
self.previous_use_tae_sd = False
self.previous_use_lcm_lora = False
self.torch_data_type = (
torch.float32 if is_openvino_device() or DEVICE == "mps" else torch.float16
)
print(f"Torch datatype : {self.torch_data_type}")
def _get_lcm_pipeline(
self,
lcm_model_id: str,
base_model_id: str,
use_local_model: bool,
):
pipeline = None
unet = UNet2DConditionModel.from_pretrained(
lcm_model_id,
torch_dtype=torch.float32,
local_files_only=use_local_model
# resume_download=True,
)
pipeline = DiffusionPipeline.from_pretrained(
base_model_id,
unet=unet,
torch_dtype=torch.float32,
local_files_only=use_local_model
# resume_download=True,
)
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
return pipeline
def get_tiny_decoder_vae_model(self) -> str:
pipeline_class = self.pipeline.__class__.__name__
print(f"Pipeline class : {pipeline_class}")
if (
pipeline_class == "LatentConsistencyModelPipeline"
or pipeline_class == "StableDiffusionPipeline"
):
return TAESD_MODEL
elif pipeline_class == "StableDiffusionXLPipeline":
return TAESDXL_MODEL
elif pipeline_class == "OVStableDiffusionPipeline":
return TAESD_MODEL_OPENVINO
def _get_lcm_model_pipeline(
self,
model_id: str,
use_local_model,
):
pipeline = None
if model_id == LCM_DEFAULT_MODEL:
pipeline = DiffusionPipeline.from_pretrained(
model_id,
local_files_only=use_local_model,
)
elif model_id == "latent-consistency/lcm-sdxl":
pipeline = self._get_lcm_pipeline(
model_id,
"stabilityai/stable-diffusion-xl-base-1.0",
use_local_model,
)
elif model_id == "latent-consistency/lcm-ssd-1b":
pipeline = self._get_lcm_pipeline(
model_id,
"segmind/SSD-1B",
use_local_model,
)
return pipeline
def _get_lcm_lora_pipeline(
self,
base_model_id: str,
lcm_lora_id: str,
use_local_model: bool,
):
pipeline = DiffusionPipeline.from_pretrained(
base_model_id,
torch_dtype=self.torch_data_type,
local_files_only=use_local_model,
)
pipeline.load_lora_weights(
lcm_lora_id,
local_files_only=use_local_model,
)
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
pipeline.fuse_lora()
pipeline.unet.to(memory_format=torch.channels_last)
return pipeline
def _pipeline_to_device(self):
print(f"Pipeline device : {DEVICE}")
print(f"Pipeline dtype : {self.torch_data_type}")
self.pipeline.to(
torch_device=DEVICE,
torch_dtype=self.torch_data_type,
)
def _add_freeu(self):
pipeline_class = self.pipeline.__class__.__name__
if pipeline_class == "StableDiffusionPipeline":
print("Add FreeU - SD")
self.pipeline.enable_freeu(
s1=0.9,
s2=0.2,
b1=1.2,
b2=1.4,
)
elif pipeline_class == "StableDiffusionXLPipeline":
print("Add FreeU - SDXL")
self.pipeline.enable_freeu(
s1=0.6,
s2=0.4,
b1=1.1,
b2=1.2,
)
def init(
self,
model_id: str,
use_openvino: bool = False,
device: str = "cpu",
use_local_model: bool = False,
use_tiny_auto_encoder: bool = False,
use_lora: bool = False,
lcm_lora: LCMLora = LCMLora(),
) -> None:
self.device = device
self.use_openvino = use_openvino
if (
self.pipeline is None
or self.previous_model_id != model_id
or self.previous_use_tae_sd != use_tiny_auto_encoder
or self.previous_lcm_lora_base_id != lcm_lora.base_model_id
or self.previous_lcm_lora_id != lcm_lora.lcm_lora_id
or self.previous_use_lcm_lora != use_lora
):
if self.use_openvino and is_openvino_device():
if self.pipeline:
del self.pipeline
self.pipeline = None
self.pipeline = OVStableDiffusionPipeline.from_pretrained(
model_id,
local_files_only=use_local_model,
ov_config={"CACHE_DIR": ""},
device=DEVICE.upper(),
)
if use_tiny_auto_encoder:
print("Using Tiny Auto Encoder (OpenVINO)")
taesd_dir = snapshot_download(
repo_id=self.get_tiny_decoder_vae_model(),
local_files_only=use_local_model,
)
self.pipeline.vae_decoder = CustomOVModelVaeDecoder(
model=OVBaseModel.load_model(
f"{taesd_dir}/vae_decoder/openvino_model.xml"
),
parent_model=self.pipeline,
model_dir=taesd_dir,
)
else:
if self.pipeline:
del self.pipeline
self.pipeline = None
if use_lora:
print("Init LCM-LoRA pipeline")
self.pipeline = self._get_lcm_lora_pipeline(
lcm_lora.base_model_id,
lcm_lora.lcm_lora_id,
use_local_model,
)
else:
print("Init LCM Model pipeline")
self.pipeline = self._get_lcm_model_pipeline(
model_id,
use_local_model,
)
if use_tiny_auto_encoder:
vae_model = self.get_tiny_decoder_vae_model()
print(f"Using Tiny Auto Encoder {vae_model}")
self.pipeline.vae = AutoencoderTiny.from_pretrained(
vae_model,
torch_dtype=torch.float32,
local_files_only=use_local_model,
)
self._pipeline_to_device()
self.previous_model_id = model_id
self.previous_use_tae_sd = use_tiny_auto_encoder
self.previous_lcm_lora_base_id = lcm_lora.base_model_id
self.previous_lcm_lora_id = lcm_lora.lcm_lora_id
self.previous_use_lcm_lora = use_lora
print(f"Model :{model_id}")
print(f"Pipeline : {self.pipeline}")
self.pipeline.scheduler = LCMScheduler.from_config(
self.pipeline.scheduler.config,
beta_start=0.001,
beta_end=0.01,
)
if use_lora:
self._add_freeu()
def generate(
self,
lcm_diffusion_setting: LCMDiffusionSetting,
reshape: bool = False,
) -> Any:
guidance_scale = lcm_diffusion_setting.guidance_scale
if lcm_diffusion_setting.use_seed:
cur_seed = lcm_diffusion_setting.seed
if self.use_openvino:
np.random.seed(cur_seed)
else:
torch.manual_seed(cur_seed)
if lcm_diffusion_setting.use_openvino and is_openvino_device():
print("Using OpenVINO")
if reshape:
print("Reshape and compile")
self.pipeline.reshape(
batch_size=-1,
height=lcm_diffusion_setting.image_height,
width=lcm_diffusion_setting.image_width,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
)
self.pipeline.compile()
if not lcm_diffusion_setting.use_safety_checker:
self.pipeline.safety_checker = None
if (
not lcm_diffusion_setting.use_lcm_lora
and not lcm_diffusion_setting.use_openvino
and lcm_diffusion_setting.guidance_scale != 1.0
):
print("Not using LCM-LoRA so setting guidance_scale 1.0")
guidance_scale = 1.0
if lcm_diffusion_setting.use_openvino:
result_images = self.pipeline(
prompt=lcm_diffusion_setting.prompt,
negative_prompt=lcm_diffusion_setting.negative_prompt,
num_inference_steps=lcm_diffusion_setting.inference_steps,
guidance_scale=guidance_scale,
width=lcm_diffusion_setting.image_width,
height=lcm_diffusion_setting.image_height,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
).images
else:
result_images = self.pipeline(
prompt=lcm_diffusion_setting.prompt,
negative_prompt=lcm_diffusion_setting.negative_prompt,
num_inference_steps=lcm_diffusion_setting.inference_steps,
guidance_scale=guidance_scale,
width=lcm_diffusion_setting.image_width,
height=lcm_diffusion_setting.image_height,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
).images
return result_images
|