File size: 5,068 Bytes
3469d37
 
 
 
 
 
 
 
 
 
 
001f6be
fa85a50
 
3469d37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296453
3469d37
001f6be
3469d37
fa85a50
1139a17
 
3469d37
 
 
 
1296453
ea39d32
 
fa85a50
 
f4e968d
 
5993d69
1139a17
fa85a50
 
3469d37
 
 
 
f4e968d
3469d37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e954e95
 
3469d37
 
 
 
5993d69
3469d37
1296453
3469d37
 
 
 
6144792
 
 
 
 
 
 
3469d37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139a17
3469d37
1296453
3469d37
 
 
 
 
 
 
 
 
1296453
 
 
 
 
3469d37
 
d90abc2
9913350
3469d37
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
from backend.lcm_text_to_image import LCMTextToImage
from backend.models.lcmdiffusion_setting import LCMLora, LCMDiffusionSetting
from constants import DEVICE, LCM_DEFAULT_MODEL_OPENVINO
from time import perf_counter
import numpy as np
from cv2 import imencode
import base64
from backend.device import get_device_name
from constants import APP_VERSION
from backend.device import is_openvino_device
import PIL
from backend.models.lcmdiffusion_setting import DiffusionTask
from pprint import pprint

lcm_text_to_image = LCMTextToImage()
lcm_lora = LCMLora(
    base_model_id="Lykon/dreamshaper-7",
    lcm_lora_id="latent-consistency/lcm-lora-sdv1-5",
)


# https://github.com/gradio-app/gradio/issues/2635#issuecomment-1423531319
def encode_pil_to_base64_new(pil_image):
    image_arr = np.asarray(pil_image)[:, :, ::-1]
    _, byte_data = imencode(".png", image_arr)
    base64_data = base64.b64encode(byte_data)
    base64_string_opencv = base64_data.decode("utf-8")
    return "data:image/png;base64," + base64_string_opencv


# monkey patching encode pil
gr.processing_utils.encode_pil_to_base64 = encode_pil_to_base64_new


def predict(
    prompt,
    steps,
    seed,
    use_seed,
):
    print(f"prompt - {prompt}")
    lcm_diffusion_setting = LCMDiffusionSetting()
    lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value
    lcm_diffusion_setting.openvino_lcm_model_id = "rupeshs/LCM-dreamshaper-v7-openvino"
    lcm_diffusion_setting.use_lcm_lora = True
    lcm_diffusion_setting.prompt = prompt
    lcm_diffusion_setting.guidance_scale = 1.0
    lcm_diffusion_setting.inference_steps = steps
    lcm_diffusion_setting.seed = seed
    lcm_diffusion_setting.use_seed = use_seed
    lcm_diffusion_setting.use_safety_checker = True
    lcm_diffusion_setting.use_tiny_auto_encoder = True
    # lcm_diffusion_setting.image_width = 320 if is_openvino_device() else 512
    # lcm_diffusion_setting.image_height = 320 if is_openvino_device() else 512
    lcm_diffusion_setting.image_width = 512
    lcm_diffusion_setting.image_height = 512
    lcm_diffusion_setting.use_openvino = False
    lcm_diffusion_setting.use_tiny_auto_encoder = True
    pprint(lcm_diffusion_setting.model_dump())
    lcm_text_to_image.init(lcm_diffusion_setting=lcm_diffusion_setting)
    start = perf_counter()
    images = lcm_text_to_image.generate(lcm_diffusion_setting)
    latency = perf_counter() - start
    print(f"Latency: {latency:.2f} seconds")
    return images[0]  # .resize([512, 512], PIL.Image.ANTIALIAS)


css = """
#container{
    margin: 0 auto;
    max-width: 40rem;
}
#intro{
    max-width: 100%;
    text-align: center;
    margin: 0 auto;
}
#generate_button {
    color: white;
    border-color: #007bff;
    background: #007bff;
    width: 200px;
    height: 50px;
}
footer {
    visibility: hidden
}
"""


def _get_footer_message() -> str:
    version = f"<center><p> {APP_VERSION} "
    footer_msg = version + (
        '  © 2023 <a href="https://github.com/rupeshs">'
        " Rupesh Sreeraman</a></p></center>"
    )
    warning_msg = "<p><b> Please note that this is a minimal demo app.</b> </p><br>"
    return warning_msg + footer_msg


with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="container"):
        use_openvino = "" if is_openvino_device() else ""
        gr.Markdown(
            f"""# FastSD CPU demo {use_openvino}
               **Device : {DEVICE.upper()} , {get_device_name()}**
            """,
            elem_id="intro",
        )
        gr.HTML(
            f"""
            <p id="project-links" align="center">
                <a href='https://github.com/rupeshs/fastsdcpu'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
            </p> 
                    """
        )

        with gr.Row():
            with gr.Row():
                prompt = gr.Textbox(
                    placeholder="Describe the image you'd like to see",
                    scale=5,
                    container=False,
                )
                generate_btn = gr.Button(
                    "Generate",
                    scale=1,
                    elem_id="generate_button",
                )

        image = gr.Image(type="filepath")
        with gr.Accordion("Advanced options", open=False):
            steps = gr.Slider(
                label="Steps",
                value=3,
                minimum=1,
                maximum=4,
                step=1,
            )
            seed = gr.Slider(
                randomize=True,
                minimum=0,
                maximum=999999999,
                label="Seed",
                step=1,
            )
            seed_checkbox = gr.Checkbox(
                label="Use seed",
                value=False,
                interactive=True,
            )
        gr.HTML(_get_footer_message())

        inputs = [prompt, steps, seed, seed_checkbox]
        generate_btn.click(fn=predict, inputs=inputs, outputs=image)


def start_demo_text_to_image(share=False):
    demo.queue()
    demo.launch(share=share)