File size: 4,374 Bytes
3469d37
 
 
 
 
 
 
 
 
 
 
001f6be
3469d37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296453
3469d37
 
 
e95c7d0
 
3469d37
1f0e151
3469d37
001f6be
3469d37
 
 
 
 
1296453
ea39d32
 
1296453
 
3469d37
 
 
 
 
001f6be
3469d37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296453
3469d37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415da73
3469d37
1296453
3469d37
 
 
 
 
 
 
 
 
1296453
 
 
 
 
3469d37
 
d90abc2
9913350
3469d37
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import gradio as gr
from backend.lcm_text_to_image import LCMTextToImage
from backend.models.lcmdiffusion_setting import LCMLora, LCMDiffusionSetting
from constants import DEVICE, LCM_DEFAULT_MODEL_OPENVINO
from time import perf_counter
import numpy as np
from cv2 import imencode
import base64
from backend.device import get_device_name
from constants import APP_VERSION
from backend.device import is_openvino_device
import PIL

lcm_text_to_image = LCMTextToImage()
lcm_lora = LCMLora(
    base_model_id="Lykon/dreamshaper-7",
    lcm_lora_id="latent-consistency/lcm-lora-sdv1-5",
)


# https://github.com/gradio-app/gradio/issues/2635#issuecomment-1423531319
def encode_pil_to_base64_new(pil_image):
    image_arr = np.asarray(pil_image)[:, :, ::-1]
    _, byte_data = imencode(".png", image_arr)
    base64_data = base64.b64encode(byte_data)
    base64_string_opencv = base64_data.decode("utf-8")
    return "data:image/png;base64," + base64_string_opencv


# monkey patching encode pil
gr.processing_utils.encode_pil_to_base64 = encode_pil_to_base64_new


def predict(
    prompt,
    steps,
    seed,
    use_seed,
):
    lcm_text_to_image.init(
        model_id=LCM_DEFAULT_MODEL_OPENVINO,
        use_openvino=True,
        use_lora=False,
        lcm_lora=lcm_lora,
        use_tiny_auto_encoder=False,
    )
    print(f"prompt - {prompt}")
    lcm_diffusion_setting = LCMDiffusionSetting()
    lcm_diffusion_setting.prompt = prompt
    lcm_diffusion_setting.guidance_scale = 1.0
    lcm_diffusion_setting.inference_steps = steps
    lcm_diffusion_setting.seed = seed
    lcm_diffusion_setting.use_seed = use_seed
    lcm_diffusion_setting.use_safety_checker = True
    lcm_diffusion_setting.use_tiny_auto_encoder = True
    lcm_diffusion_setting.image_width = 320 if is_openvino_device() else 512
    lcm_diffusion_setting.image_height = 320 if is_openvino_device() else 512
    lcm_diffusion_setting.use_openvino = True if is_openvino_device() else False
    start = perf_counter()
    images = lcm_text_to_image.generate(lcm_diffusion_setting)
    latency = perf_counter() - start
    print(f"Latency: {latency:.2f} seconds")
    return images[0].resize([512, 512], PIL.Image.ANTIALIAS)


css = """
#container{
    margin: 0 auto;
    max-width: 40rem;
}
#intro{
    max-width: 100%;
    text-align: center;
    margin: 0 auto;
}
#generate_button {
    color: white;
    border-color: #007bff;
    background: #007bff;
    width: 200px;
    height: 50px;
}
footer {
    visibility: hidden
}
"""


def _get_footer_message() -> str:
    version = f"<center><p> {APP_VERSION} "
    footer_msg = version + (
        '  © 2023 <a href="https://github.com/rupeshs">'
        " Rupesh Sreeraman</a></p></center>"
    )
    return footer_msg


with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="container"):
        use_openvino = "- OpenVINO" if is_openvino_device() else ""
        gr.Markdown(
            f"""# FastSD CPU demo {use_openvino}
               **Device : {DEVICE.upper()} , {get_device_name()}**
            """,
            elem_id="intro",
        )

        with gr.Row():
            with gr.Row():
                prompt = gr.Textbox(
                    placeholder="Describe the image you'd like to see",
                    scale=5,
                    container=False,
                )
                generate_btn = gr.Button(
                    "Generate",
                    scale=1,
                    elem_id="generate_button",
                )

        image = gr.Image(type="filepath")
        with gr.Accordion("Advanced options", open=False):
            steps = gr.Slider(
                label="Steps",
                value=1,
                minimum=1,
                maximum=4,
                step=1,
            )
            seed = gr.Slider(
                randomize=True,
                minimum=0,
                maximum=999999999,
                label="Seed",
                step=1,
            )
            seed_checkbox = gr.Checkbox(
                label="Use seed",
                value=False,
                interactive=True,
            )
        gr.HTML(_get_footer_message())

        inputs = [prompt, steps, seed, seed_checkbox]
        generate_btn.click(fn=predict, inputs=inputs, outputs=image)


def start_demo_text_to_image(share=False):
    demo.queue()
    demo.launch(share=share)