Spaces:
Running
Running
import gradio as gr | |
from backend.lcm_text_to_image import LCMTextToImage | |
from backend.models.lcmdiffusion_setting import LCMLora, LCMDiffusionSetting | |
from constants import DEVICE, LCM_DEFAULT_MODEL_OPENVINO | |
from time import perf_counter | |
import numpy as np | |
from cv2 import imencode | |
import base64 | |
from backend.device import get_device_name | |
from constants import APP_VERSION | |
from backend.device import is_openvino_device | |
import PIL | |
lcm_text_to_image = LCMTextToImage() | |
lcm_lora = LCMLora( | |
base_model_id="Lykon/dreamshaper-7", | |
lcm_lora_id="latent-consistency/lcm-lora-sdv1-5", | |
) | |
# https://github.com/gradio-app/gradio/issues/2635#issuecomment-1423531319 | |
def encode_pil_to_base64_new(pil_image): | |
image_arr = np.asarray(pil_image)[:, :, ::-1] | |
_, byte_data = imencode(".png", image_arr) | |
base64_data = base64.b64encode(byte_data) | |
base64_string_opencv = base64_data.decode("utf-8") | |
return "data:image/png;base64," + base64_string_opencv | |
# monkey patching encode pil | |
gr.processing_utils.encode_pil_to_base64 = encode_pil_to_base64_new | |
def predict( | |
prompt, | |
steps, | |
seed, | |
): | |
lcm_text_to_image.init( | |
model_id=LCM_DEFAULT_MODEL_OPENVINO, | |
use_openvino=True, | |
use_lora=False, | |
lcm_lora=lcm_lora, | |
) | |
print(f"prompt - {prompt}") | |
lcm_diffusion_setting = LCMDiffusionSetting() | |
lcm_diffusion_setting.prompt = prompt | |
lcm_diffusion_setting.guidance_scale = 1.0 | |
lcm_diffusion_setting.inference_steps = steps | |
lcm_diffusion_setting.seed = seed | |
lcm_diffusion_setting.use_seed = True | |
lcm_diffusion_setting.image_width = 384 if is_openvino_device() else 512 | |
lcm_diffusion_setting.image_height = 384 if is_openvino_device() else 512 | |
lcm_diffusion_setting.use_openvino = True if is_openvino_device() else False | |
start = perf_counter() | |
images = lcm_text_to_image.generate(lcm_diffusion_setting) | |
latency = perf_counter() - start | |
print(f"Latency: {latency:.2f} seconds") | |
return images[0].resize([512, 512], PIL.Image.ANTIALIAS) | |
css = """ | |
#container{ | |
margin: 0 auto; | |
max-width: 40rem; | |
} | |
#intro{ | |
max-width: 100%; | |
text-align: center; | |
margin: 0 auto; | |
} | |
#generate_button { | |
color: white; | |
border-color: #007bff; | |
background: #007bff; | |
width: 200px; | |
height: 50px; | |
} | |
footer { | |
visibility: hidden | |
} | |
""" | |
def _get_footer_message() -> str: | |
version = f"<center><p> {APP_VERSION} " | |
footer_msg = version + ( | |
' © 2023 <a href="https://github.com/rupeshs">' | |
" Rupesh Sreeraman</a></p></center>" | |
) | |
return footer_msg | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="container"): | |
use_openvino = "- OpenVINO" if is_openvino_device() else "" | |
gr.Markdown( | |
f"""# FastSD CPU {use_openvino} | |
**Device : {DEVICE.upper()} , {get_device_name()}** | |
""", | |
elem_id="intro", | |
) | |
with gr.Row(): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
placeholder="Describe the image you'd like to see", | |
scale=5, | |
container=False, | |
) | |
generate_btn = gr.Button( | |
"Generate", | |
scale=1, | |
elem_id="generate_button", | |
) | |
image = gr.Image(type="filepath") | |
with gr.Accordion("Advanced options", open=False): | |
steps = gr.Slider( | |
label="Steps", | |
value=3 if is_openvino_device() else 3, | |
minimum=1, | |
maximum=6, | |
step=1, | |
) | |
seed = gr.Slider( | |
randomize=True, | |
minimum=0, | |
maximum=999999999, | |
label="Seed", | |
step=1, | |
) | |
gr.HTML(_get_footer_message()) | |
inputs = [prompt, steps, seed] | |
prompt.input(fn=predict, inputs=inputs) | |
generate_btn.click(fn=predict, inputs=inputs, outputs=image) | |
steps.change(fn=predict, inputs=inputs) | |
seed.change(fn=predict, inputs=inputs) | |
def start_demo_text_to_image(share=False): | |
demo.queue() | |
demo.launch(share=share) | |