Image-To-Text / main.py
ruslanmv's picture
Update main.py
ef825ae verified
import gradio as gr
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel
import torch
git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
git_processor_large = AutoProcessor.from_pretrained("microsoft/git-large-coco")
git_model_large = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
device = "cuda" if torch.cuda.is_available() else "cpu"
git_model_base.to(device)
blip_model_base.to(device)
git_model_large.to(device)
blip_model_large.to(device)
vitgpt_model.to(device)
def generate_caption(processor, model, image, tokenizer=None):
inputs = processor(images=image, return_tensors="pt").to(device)
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
if tokenizer is not None:
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
else:
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
def generate_captions(image):
caption_git_base = generate_caption(git_processor_base, git_model_base, image)
caption_git_large = generate_caption(git_processor_large, git_model_large, image)
caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)
caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
return caption_git_base, caption_git_large, caption_blip_base, caption_blip_large, caption_vitgpt
examples = [["cat.jpg"], ["dog.jpg"], ["horse.jpg"]]
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base"), gr.outputs.Textbox(label="Caption generated by GIT-large"), gr.outputs.Textbox(label="Caption generated by BLIP-base"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by ViT+GPT-2")]
title = "Image to Text : Multiple Models"
description = "Explore the Gradio Demo for comparing three state-of-the-art vision+language models: GIT, BLIP, and ViT+GPT2. To use the demo, upload your image and click 'submit,' or choose from the provided examples."
article = "<p style='text-align: center'><a href='https://huggingface.co/docs/transformers/main/model_doc/blip' target='_blank'>BLIP docs</a> | <a href='https://huggingface.co/docs/transformers/main/model_doc/git' target='_blank'>GIT docs</a></p>"
iface = gr.Interface(fn=generate_captions,
inputs=gr.inputs.Image(type="pil"),
outputs=outputs,
examples=examples,
title=title,
description=description,
article=article,
enable_queue=True)
iface.launch(server_name="0.0.0.0", server_port=7860)
'''
import gradio as gr
import numpy as np
from PIL import Image
def generate_ascii_art(image):
try:
# Convert the numpy array to a PIL Image
img = Image.fromarray(np.uint8(image))
# Resize the image to a smaller size for faster processing
img = img.resize((80, 60))
# Convert the image to grayscale
img = img.convert("L")
# Define ASCII characters to represent different intensity levels
#ascii_chars = "@%#*+=-:. "
ascii_chars = "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/|()1{}[]?-_+~<>i!lI;:,\\^`'. "
# Convert each pixel to ASCII character based on intensity
ascii_image = ""
for pixel_value in img.getdata():
ascii_image += ascii_chars[pixel_value // 25]
# Reshape the ASCII string to match the resized image dimensions
ascii_image = "\n".join([ascii_image[i:i + img.width] for i in range(0, len(ascii_image), img.width)])
return ascii_image
except Exception as e:
return f"Error: {e}"
iface = gr.Interface(
fn=generate_ascii_art,
inputs="image",
outputs="text",
title="ASCII Art Generator",
description="Upload an image, and this app will turn it into ASCII art! - Simple Gradio App from Docker",
live=True
)
iface.launch(server_name="0.0.0.0", server_port=7860)
import gradio as gr
import subprocess
def run_command(command):
try:
result = subprocess.check_output(command, shell=True, text=True)
return result
except subprocess.CalledProcessError as e:
return f"Error: {e}"
iface = gr.Interface(
fn=run_command,
inputs="text",
outputs="text",
#live=True,
title="Command Output Viewer",
description="Enter a command and view its output.",
examples=[
["ls"],
["pwd"],
["echo 'Hello, Gradio!'"]]
)
iface.launch(server_name="0.0.0.0", server_port=7860)
'''