File size: 2,101 Bytes
7df64f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import urllib.request
from pathlib import Path
from threading import Thread
from urllib.error import HTTPError
from tqdm import tqdm
#/Wav2Lip/checkpoints/wav2lip_gan.pth
#/Wav2Lip/face_detection/detection/sfd/s3fd.pth
default_models = {
"wav2lip_gan": ("https://drive.google.com/u/0/uc?id=1V8hobVlZJdp8dzI8qWaAlbhCrXdBiUET&export=download&confirm=t", 435801865,'checkpoints'),
"s3fd": ("https://drive.google.com/u/0/uc?id=1Y-mgxW8iq1pXUQicU_8ClNB85eQ1lk0o&export=download", 89843225,'face_detection/detection/sfd'),
}
class DownloadProgressBar(tqdm):
def update_to(self, b=1, bsize=1, tsize=None):
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n)
def download(url: str, target: Path, bar_pos=0):
# Ensure the directory exists
target.parent.mkdir(exist_ok=True, parents=True)
desc = f"Downloading {target.name}"
with DownloadProgressBar(unit="B", unit_scale=True, miniters=1, desc=desc, position=bar_pos, leave=False) as t:
try:
urllib.request.urlretrieve(url, filename=target, reporthook=t.update_to)
except HTTPError:
return
def ensure_default_models(models_dir: Path):
# Define download tasks
jobs = []
for model_name, (url, size,path_tobe) in default_models.items():
target_path = models_dir / path_tobe / f"{model_name}.pth"
print(target_path)
if target_path.exists():
if target_path.stat().st_size != size:
print(f"File {target_path} is not of expected size, redownloading...")
else:
continue
thread = Thread(target=download, args=(url, target_path, len(jobs)))
thread.start()
jobs.append((thread, target_path, size))
# Run and join threads
for thread, target_path, size in jobs:
thread.join()
assert target_path.exists() and target_path.stat().st_size == size, \
f"Download for {target_path.name} failed. You may download models manually instead.\n" \
|