ryanrahmadifa
Added files
79e1719
raw
history blame
13.4 kB
from neuralforecast.losses.pytorch import MAE
from neuralforecast.auto import AutoNHITS, AutoTSMixer, AutoiTransformer, AutoTSMixerx, NBEATSx
from neuralforecast import NeuralForecast
from modules.transform import transformData, prepareData, calendarFeatures, createLag
from pytorch_lightning.loggers import CSVLogger
import uuid
from pytorch_lightning import Trainer
import os
import pandas as pd
import pickle
from pathlib import Path
def trainModel(dataset,
artifacts_path,
variate='uni',
y_var='brent_futures_Close',
horizon_len=5,
val_size=0.1,
test_size=0.1,
lag_amt=0): # Maybe change y_var to an input? (via User Interaction)
# Code for univariate time-series forecasting
if variate == 'univariate':
from neuralforecast.auto import AutoNHITS, AutoTSMixer, AutoTSMixerx, AutoNBEATSx
Y_df = dataset.rename({'Date' : 'ds', y_var : 'y'}, axis=1)
Y_df['unique_id'] = 0
# TestValSplit
len_data = len(Y_df.ds.unique())
val_size = int(.1 * len_data)
test_size = int(.1 * len_data)
Y_df['ds'] = pd.to_datetime(Y_df['ds'])
Y_df = Y_df[['ds', 'y', 'unique_id']]
Y_df = calendarFeatures(Y_df)
Y_df.to_csv(os.path.join(artifacts_path, 'train_data.csv'))
print(f'Total length is {len_data}, with validation and test size of {val_size} for each')
import optuna
optuna.logging.set_verbosity(optuna.logging.WARNING) # Use this to disable training prints from optuna
def config_nhits(horizon_len, trial):
return {
"max_steps": 1000, # Number of SGD steps
"input_size" : trial.suggest_categorical("input_size", [horizon_len, horizon_len*2]), # Size of input window
"learning_rate": trial.suggest_loguniform("learning_rate", 1e-5, 1e-1), # Initial Learning rate
"n_pool_kernel_size": trial.suggest_categorical("n_pool_kernel_size", [[2, 2, 2], [16, 8, 1]]), # MaxPool's Kernel size
"n_freq_downsample": trial.suggest_categorical("n_freq_downsample", [[168, 24, 1], [24, 12, 1]]), # Interpolation expressivity ratios
"val_check_steps": 50, # Compute validation every 50 steps
"early_stop_patience_steps": 5, # Stops at 5 steps max if loss doesn't get beter
"random_seed": trial.suggest_int("random_seed", 1, 10), # Random seed
}
def config_tsmixer(horizon_len, trial):
return {
"max_steps": 1000,
"n_series" : 1,
"input_size" : trial.suggest_categorical("input_size", [horizon_len, horizon_len*2]),
"learning_rate": trial.suggest_loguniform("learning_rate", 1e-5, 1e-1),
"ff_dim": trial.suggest_categorical("ff_dim", [64,128]),
"n_block": trial.suggest_categorical("n_block", [4,8]),
"val_check_steps": 50,
"early_stop_patience_steps": 5,
"scaler_type": 'identity',
}
def config_nbeatsx(horizon_len, trial):
return {
"max_steps": 1000, # Number of SGD steps
"futr_exog_list": ['day_of_week', 'is_weekend', 'month', 'day_of_month', 'quarter', 'year', 'is_holiday'],
"input_size" : trial.suggest_categorical("input_size", [horizon_len, horizon_len*2]), # Size of input window
"learning_rate": trial.suggest_loguniform("learning_rate", 1e-5, 1e-1), # Initial Learning rate # Interpolation expressivity ratios
"val_check_steps": 50, # Compute validation every 50 steps
"early_stop_patience_steps": 5, # Stops at 5 steps max if loss doesn't get beter
"random_seed": trial.suggest_int("random_seed", 1, 10), # Random seed
}
def config_tsmixerx(horizon_len, trial):
return {
"max_steps": 1000,
"futr_exog_list": ['day_of_week', 'is_weekend', 'month', 'day_of_month', 'quarter', 'year', 'is_holiday'],
"n_series" : 1,
"input_size" : trial.suggest_categorical("input_size", [horizon_len, horizon_len*2]),
"learning_rate": trial.suggest_loguniform("learning_rate", 1e-5, 1e-1),
"ff_dim": trial.suggest_categorical("ff_dim", [64,128]),
"n_block": trial.suggest_categorical("n_block", [4,8]),
"val_check_steps": 50,
"early_stop_patience_steps": 5,
"scaler_type": 'identity',
}
model = [AutoNHITS(h=horizon_len,
loss=MAE(),
valid_loss=MAE(),
config=lambda trial: config_nhits(horizon_len, trial),
search_alg=optuna.samplers.TPESampler(),
backend='optuna',
num_samples=10),
AutoTSMixer(h=horizon_len,
n_series=1,
loss=MAE(),
valid_loss=MAE(),
config=lambda trial: config_tsmixer(horizon_len, trial),
search_alg=optuna.samplers.TPESampler(),
backend='optuna',
num_samples=10),
AutoNBEATSx(h=horizon_len,
loss=MAE(),
valid_loss=MAE(),
config=lambda trial: config_nbeatsx(horizon_len, trial),
search_alg=optuna.samplers.TPESampler(),
backend='optuna',
num_samples=10),
AutoTSMixerx(h=horizon_len,
n_series=1,
loss=MAE(),
valid_loss=MAE(),
config=lambda trial: config_tsmixerx(horizon_len, trial),
search_alg=optuna.samplers.TPESampler(),
backend='optuna',
num_samples=10)]
# Set up custom logger to change logging directory
log_dir = os.path.join(artifacts_path, 'training_logs')
# Setting logger environment if applicable - for illustrative purposes
Trainer.default_root_dir = log_dir
logger = CSVLogger(save_dir=log_dir, name='forecast_logs')
nf = NeuralForecast(models=model, freq='B')
nf.fit(df=Y_df, val_size=val_size)
results = nf.models[1].results.trials_dataframe()
results.drop(columns='user_attrs_ALL_PARAMS')
return nf, results
# Code for multivariate time-series forecasting
if variate == 'multivariate':
from neuralforecast.auto import AutoTSMixer, AutoiTransformer
Y_df = dataset.melt(id_vars=['Date'], var_name='unique_id', value_name='y')
Y_df = Y_df.rename({'Date' : 'ds'}, axis=1)
# TestValSplit
len_data = len(Y_df.ds.unique())
val_size = int(.1 * len_data)
test_size = int(.1 * len_data)
Y_df['ds'] = pd.to_datetime(Y_df['ds'])
Y_df.to_csv(os.path.join(artifacts_path, 'train_data.csv'))
print(f'Total length is {len_data}, with validation and test size of {val_size} for each')
import optuna
optuna.logging.set_verbosity(optuna.logging.WARNING) # Use this to disable training prints from optuna
def config_autoitransformer(horizon_len, trial):
return {
"max_steps": 1000,
"n_series" : Y_df['unique_id'].nunique(), # Number of SGD steps
"input_size" : trial.suggest_categorical("input_size", [horizon_len, horizon_len*2]), # Size of input window
"learning_rate": trial.suggest_loguniform("learning_rate", 1e-5, 1e-1), # Initial Learning rate
"hidden_size": trial.suggest_categorical("hidden_size", [128, 256]), # MaxPool's Kernel size
"n_heads": trial.suggest_categorical("n_heads", [2,4]), # Interpolation expressivity ratios
"e_layers": trial.suggest_categorical("e_layers", [2,4]),
"val_check_steps": 50, # Compute validation every 50 steps
"early_stop_patience_steps": 5, # Stops at 5 steps max if loss doesn't get beter
"random_seed": trial.suggest_int("random_seed", 1, 10), # Random seed
}
def config_tsmixer(horizon_len, trial):
return {
"max_steps": 1000,
"n_series" : Y_df['unique_id'].nunique(),
"input_size" : trial.suggest_categorical("input_size", [horizon_len, horizon_len*2]),
"learning_rate": trial.suggest_loguniform("learning_rate", 1e-5, 1e-1),
"ff_dim": trial.suggest_categorical("ff_dim", [64,128]),
"n_block": trial.suggest_categorical("n_block", [4,8]),
"val_check_steps": 50,
"early_stop_patience_steps": 5,
"scaler_type": 'identity',
}
model = [AutoiTransformer(h=horizon_len,
n_series=Y_df['unique_id'].nunique(),
loss=MAE(),
valid_loss=MAE(),
config=lambda trial: config_autoitransformer(horizon_len, trial),
search_alg=optuna.samplers.TPESampler(),
backend='optuna',
num_samples=10),
AutoTSMixer(h=horizon_len,
n_series=Y_df['unique_id'].nunique(),
loss=MAE(),
valid_loss=MAE(),
config=lambda trial: config_tsmixer(horizon_len, trial),
search_alg=optuna.samplers.TPESampler(),
backend='optuna',
num_samples=10)]
# Set up custom logger to change logging directory
log_dir = os.path.join(artifacts_path, 'training_logs')
# Setting logger environment if applicable - for illustrative purposes
Trainer.default_root_dir = log_dir
logger = CSVLogger(save_dir=log_dir, name='forecast_logs')
nf = NeuralForecast(models=model, freq='B')
nf.fit(df=Y_df, val_size=val_size)
results = nf.models[1].results.trials_dataframe()
results.drop(columns='user_attrs_ALL_PARAMS')
return nf, results
def main():
import logging
directory = Path(__file__).parent.absolute()
logging.basicConfig(level=logging.INFO)
data_dir = 'crude_oil' # Should be choosable later on?
run_id = str(f'{data_dir}_{str(uuid.uuid4())}')
artifacts_path = os.path.join(directory, 'artifacts', run_id)
logging.info(f'Created forecasting pipeline with id {run_id}')
os.mkdir(artifacts_path)
prepared_data = prepareData(parent_dir=directory, data_dir=data_dir, run_id=run_id)
train_data, transformations = transformData(prepared_data, dir=directory, id=run_id)
train_data.to_csv(os.path.join(artifacts_path, 'transformed_dataset.csv'))
# Save transformations including StandardScaler objects
with open(os.path.join(artifacts_path, 'transformations.pkl'), 'wb') as fp:
pickle.dump(transformations, fp)
nf, results = trainModel(dataset=train_data, variate='univariate', artifacts_path=artifacts_path)
results.to_csv(os.path.join(artifacts_path, 'training_results.csv'))
nf.save(path=os.path.join(artifacts_path, 'model'),
model_index=None,
overwrite=True,
save_dataset=True)
if __name__ == "__main__":
main()