import streamlit as st import pandas as pd from modules.data_preparation import prepare_df, plot_3dgraph import numpy as np import matplotlib.pyplot as plt from datetime import datetime from modules.semantic import generateChartBar, generateWordCloud, filterPlace st.title('Semantic Analysis for Price Trend Prediction - Crude Oil Futures') st.header('Filter news based on categories and country/region') # st.header(f'Data based on News Data') # st.subheader(f'{datetime.now()}') date_filter = st.slider( "Date Filter", value=(datetime(2024, 8, 4), datetime(2024,8,9)), format="MM/DD/YY", ) col1, col2 = st.columns(2) with col1: news_categories = st.multiselect("Select desired news categories", ["Macroeconomic & Geopolitics", "Crude Oil", "Light Ends", "Middle Distillates", "Heavy Distillates", "Other"], ["Macroeconomic & Geopolitics", "Crude Oil"]) with col2: news_location = st.selectbox("Select desired mentioned location", ["North America","United States", "Russia", "Asia", "Europe"]) st.subheader('Tabular Data') latest_news = prepare_df(pd.read_excel('evaluation.xlsx'), news_categories, date_filter) df_news = pd.concat([latest_news], ignore_index=True).drop_duplicates(['headline']) df_news = filterPlace(df_news, news_location) df_mean = pd.DataFrame({ 'headline' : ['MEAN OF SELECTED NEWS'], 'negative_score' : [df_news['negative_score'].mean()], 'neutral_score' : [df_news['neutral_score'].mean()], 'positive_score' : [df_news['positive_score'].mean()], 'topic_verification' : [''] }) df_news_final = pd.concat([df_news, df_mean]) df_news_final.index = np.arange(1, len(df_news_final) + 1) st.dataframe(df_news_final.iloc[:, : 9]) try: st.plotly_chart(plot_3dgraph(df_news_final), use_container_width=True) except: st.subheader('Select news categories to plot 3D graph') st.markdown('---') viz1, viz2 = st.columns(2) st.subheader('Top Word Frequency - Bar Chart') bar_chart = generateChartBar(data=df_news,search_word=news_location, body=True) st.plotly_chart(bar_chart) st.markdown('---') st.subheader('Top Word Frequency - Word Cloud') wordcloud = generateWordCloud(data=df_news) # Display the generated image: fig, ax = plt.subplots() ax.imshow(wordcloud, interpolation='bilinear') ax.axis("off") st.pyplot(fig) st.markdown('---') st.subheader('Other possible use cases:') st.markdown('- Sentiments towards a company, country, or individual')