import re import plotly.express as px import datetime import plotly.graph_objects as go import numpy as np import pandas as pd import datetime def clean_text(text): new_text = text for rgx_match in ['[A-Z ]+:']: new_text = re.sub(rgx_match, '', new_text) return new_text def prepare_df(df, categories, date_filter): try: df.drop(columns=['Unnamed: 0'], inplace=True) except: pass #df['topic_verification'][(df.headline.str.contains('crude', case=False)) | df.body.str.contains('crude', case=False)] = 'Crude Oil' # Check if categories is not empty before filtering if categories: news_data = df[df['topic_verification'].isin(categories)] else: news_data = df try: news_data = df[df['topic_verification'].isin(categories)] actual_day = datetime.date.today() - datetime.timedelta(days=1) pattern_del = actual_day.strftime('%b').upper() filter = news_data['headline'].str.contains(pattern_del) news_data = news_data[~filter] # shift column 'C' to first position first_column = news_data.pop('headline') # insert column using insert(position,column_name,first_column) function news_data.insert(0, 'headline', first_column) news_data['updatedDate'] = pd.to_datetime(news_data['updatedDate'], format='%Y-%m-%d %H:%M:%S%z') dates = [] dates.append(datetime.datetime.strftime(date_filter[0], '%Y-%m-%d %H:%M:%S%z')) dates.append(datetime.datetime.strftime(date_filter[1], '%Y-%m-%d %H:%M:%S%z')) news_data = news_data[(news_data['updatedDate'] >= dates[0]) & (news_data['updatedDate'] <= dates[1])] except Exception as E: print(E) return news_data def plot_3dgraph(news_data): fig = px.scatter_3d(news_data, x='neutral_score', y='negative_score', z='positive_score', color='positive_score', hover_name ='headline', color_continuous_scale='RdBu', size_max=40, size='negative_score', #text='headline', hover_data='topic_verification') fig.update_layout( height=600, title=dict(text=f"News Semantics towards Crude Oil Price
Hover cursor on a datapoint to show news title", font=dict(size=35), automargin=False) ) fig.update_traces(textfont_size=8) trace=dict(type='scatter3d', x=news_data.iloc[[-1]]['neutral_score'], y=news_data.iloc[[-1]]['negative_score'], z=news_data.iloc[[-1]]['positive_score'], mode='markers', name= 'MEAN OF SELECTED NEWS', marker=dict(color=[f'rgb({0}, {250}, {200})' for _ in range(25)], size=10) ) fig.add_trace(trace) return fig