import streamlit as st import pandas as pd import os from PIL import Image st.title('Price Forecasting - Crude Oil Futures') st.subheader('This page is not interactive - only for prototype purposes*') st.text('*Due to not having access to GPU for cloud computation yet.') st.header('Univariate Forecasting with Exogenous Predictors') col1, col2, col3 = st.columns(3) uni_df = pd.read_csv(os.path.join('price_forecasting_ml', 'artifacts', 'crude_oil_8998a364-2ecc-483d-8079-f04d455b4522', 'train_data.csv')).drop(columns=['Unnamed: 0']) with col1: horizon_uni = st.text_input('Univariate Forecasting Horizon') with col2: target_uni = st.multiselect('Univariate Target Variable', uni_df.columns ,default='y') with col3: agg_uni = st.selectbox('Univariate Data Aggregation', ['Daily', 'Weekly', 'Monthly', 'Yearly']) st.dataframe(uni_df) img1 = Image.open(os.path.join('price_forecasting_ml', 'artifacts', 'crude_oil_8998a364-2ecc-483d-8079-f04d455b4522', 'forecast_plot.jpg')) st.image(img1, caption="Crude Oil Futures Price Forecasting - Univariate with Exogenous Features (Horizon = 5)") st.markdown("---") st.header('Multivariate Forecasting') col4, col5, col6 = st.columns(3) multi_df = pd.read_csv(os.path.join('price_forecasting_ml', 'artifacts', 'crude_oil_df1ce299-117d-43c7-bcd5-7ecaeac0bc89', 'train_data.csv')).drop(columns=['Unnamed: 0']) with col4: horizon_multi = st.text_input('Multivariate Forecasting Horizon') with col5: target_multi = st.multiselect('Multivariate Target Variable', multi_df.columns ,default='y') with col6: agg_multi = st.selectbox('Multivariate Data Aggregation', ['Daily', 'Weekly', 'Monthly', 'Yearly']) st.dataframe(multi_df) img2 = Image.open(os.path.join('price_forecasting_ml', 'artifacts', 'crude_oil_df1ce299-117d-43c7-bcd5-7ecaeac0bc89', 'forecast_plot.jpg')) st.image(img2, caption="Crude Oil Futures Price Forecasting - Multivariate (Horizon = 5)")