import pandas as pd import os import nltk from nltk.corpus import stopwords import plotly.express as px from collections import Counter import re import matplotlib.pyplot as plt from wordcloud import WordCloud place_mapping = { 'united states': 'United States', 'u.s.': 'United States', 'US': 'United States', 'america': 'United States', 'north america': 'North America', 'usa': 'United States', 'south america': 'South America', 'american': 'United States', 'europe': 'Europe', 'eu': 'Europe', 'china': 'China', 'chinese': 'China', 'russia': 'Russia', 'arab': 'Arab Countries', 'middle east': 'Middle East', 'asia': 'Asia', 'asian': 'Asia', 'spain': 'Spain', 'germany': 'Germany', 'france': 'France', 'uk': 'United Kingdom', 'britain': 'United Kingdom', 'canada': 'Canada', 'mexico': 'Mexico', 'brazil': 'Brazil', 'venezuela': 'Venezuela', 'angola': 'Angola', 'nigeria': 'Nigeria', 'libya': 'Libya', 'iraq': 'Iraq', 'iran': 'Iran', 'kuwait': 'Kuwait', 'qatar': 'Qatar', 'saudi arabia': 'Saudi Arabia', 'gcc': 'Gulf Cooperation Council', 'asia-pacific': 'Asia', 'southeast asia': 'Asia', 'latin america': 'Latin America', 'caribbean': 'Caribbean', } region_mapping = { 'North America': ['United States', 'Canada', 'Mexico'], 'South America': ['Brazil', 'Venezuela'], 'Europe': ['United Kingdom', 'Germany', 'France', 'Spain', 'Russia'], 'Asia': ['China', 'India', 'Japan', 'South Korea'], 'Middle East': ['Saudi Arabia', 'Iran', 'Iraq', 'Qatar', 'Kuwait'], 'Africa': ['Nigeria', 'Libya', 'Angola'], # Add more regions as necessary } nomenclature_mapping = { 'petroleum': 'Petroleum', 'energy': 'Energy', 'fuel oil': 'Fuel Oil', 'shale': 'Shale', 'offshore': 'Offshore', 'upstream': 'Upstream', 'hsfo': 'HSFO', 'downstream': 'Downstream', 'crude oil': 'Crude Oil', 'crude' : 'Crude Oil', 'refinery': 'Refinery', 'oil field': 'Oil Field', 'drilling': 'Drilling', 'gas': 'Gas', 'liquefied natural gas': 'LNG', 'natural gas': 'NG', 'oil': 'Crude Oil', } company_mapping = { 'exxonmobil': 'ExxonMobil', 'exxon': 'ExxonMobil', 'chevron': 'Chevron', 'bp': 'BP', 'british petroleum': 'BP', 'shell': 'Shell', 'total energies': 'TotalEnergies', 'conoco': 'ConocoPhillips', 'halliburton': 'Halliburton', 'slb': 'SLB', 'schlumberger': 'SLB', 'devon': 'Devon Energy', 'occidental': 'Occidental Petroleum', 'marathon': 'Marathon Oil', 'valero': 'Valero Energy', 'aramco': 'Aramco', } nltk.download('stopwords') stop_words = set(stopwords.words('english')) # Function to clean, tokenize, and remove stopwords def tokenize(text): text = re.sub(r'[^\w\s]', '', text.lower()) words = text.split() mapped_words = [] for word in words: mapped_word = place_mapping.get(word, nomenclature_mapping.get(word, company_mapping.get(word, word))) mapped_words.append(mapped_word) filtered_words = [word for word in mapped_words if word not in stop_words] return filtered_words # Function to apply filtering and plotting based on search input def generateChartBar(data, search_word, body=False): # filtered_df = data[data['headline'].str.contains(search_word, case=False) | data['body'].str.contains(search_word, case=False)] all_words = [] data['headline'].apply(lambda x: all_words.extend(tokenize(x))) if body: data['body'].apply(lambda x: all_words.extend(tokenize(x))) word_counts = Counter(all_words) top_10_words = word_counts.most_common(20) top_10_df = pd.DataFrame(top_10_words, columns=['word', 'frequency']) fig = px.bar(top_10_df, x='word', y='frequency', title=f'Top 20 Most Common Words (Excluding Stopwords) for "{search_word}"', labels={'word': 'Word', 'frequency': 'Frequency'}, text='frequency') return fig # Function to filter based on the whole word/phrase and region def filterPlace(data, search_place): # Check if the search_place is a region if search_place in region_mapping: # Get all countries in the region countries_in_region = region_mapping[search_place] # Map countries to their place_mapping synonyms synonyms_pattern = '|'.join( r'\b{}\b'.format(re.escape(key)) for country in countries_in_region for key in place_mapping if place_mapping[key] == country ) else: # If a country is selected, get its standard place and synonyms standard_place = place_mapping.get(search_place.lower(), search_place) synonyms_pattern = '|'.join( r'\b{}\b'.format(re.escape(key)) for key in place_mapping if place_mapping[key] == standard_place ) # Filter the DataFrame for headlines or body containing the whole word/phrase filtered_df = data[ data['headline'].str.contains(synonyms_pattern, case=False, na=False) | data['body'].str.contains(synonyms_pattern, case=False, na=False) ] if filtered_df.empty: print(f'No data found for {search_place}. Please try a different location or region.') return None return filtered_df # Function to filter DataFrame and generate a word cloud def generateWordCloud(data): # standard_place = place_mapping.get(search_place.lower(), search_place) # synonyms_pattern = '|'.join(re.escape(key) for key in place_mapping if place_mapping[key] == standard_place) # filtered_df = data[data['headline'].str.contains(synonyms_pattern, case=False, na=False) | # data['body'].str.contains(synonyms_pattern, case=False, na=False)] # if filtered_df.empty: # print(f'No data found for {search_place}. Please try a different location.') # return text = ' '.join(data['headline'].tolist() + data['body'].tolist()) wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text) return wordcloud