Spaces:
Runtime error
Runtime error
ryanrahmadifa
commited on
Commit
•
8010b21
1
Parent(s):
220ae8f
Added more features.
Browse files- modules/__pycache__/data_preparation.cpython-39.pyc +0 -0
- modules/data_preparation.py +10 -3
- test.ipynb +316 -1
modules/__pycache__/data_preparation.cpython-39.pyc
CHANGED
Binary files a/modules/__pycache__/data_preparation.cpython-39.pyc and b/modules/__pycache__/data_preparation.cpython-39.pyc differ
|
|
modules/data_preparation.py
CHANGED
@@ -3,6 +3,8 @@ import plotly.express as px
|
|
3 |
import datetime
|
4 |
import plotly.graph_objects as go
|
5 |
import numpy as np
|
|
|
|
|
6 |
|
7 |
def clean_text(text):
|
8 |
new_text = text
|
@@ -32,10 +34,15 @@ def prepare_df(df, categories, date_filter):
|
|
32 |
|
33 |
# insert column using insert(position,column_name,first_column) function
|
34 |
news_data.insert(0, 'headline', first_column)
|
35 |
-
|
36 |
-
news_data['updatedDate'] = news_data['updatedDate'].apply(lambda x: datetime.datetime.strptime(x, '%y/%m/%d %H:%M:%S'))
|
37 |
|
38 |
-
news_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
except Exception as E:
|
41 |
print(E)
|
|
|
3 |
import datetime
|
4 |
import plotly.graph_objects as go
|
5 |
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import datetime
|
8 |
|
9 |
def clean_text(text):
|
10 |
new_text = text
|
|
|
34 |
|
35 |
# insert column using insert(position,column_name,first_column) function
|
36 |
news_data.insert(0, 'headline', first_column)
|
|
|
|
|
37 |
|
38 |
+
news_data['updatedDate'] = pd.to_datetime(news_data['updatedDate'], format='%Y-%m-%d %H:%M:%S%z')
|
39 |
+
|
40 |
+
dates = []
|
41 |
+
|
42 |
+
dates.append(datetime.datetime.strftime(date_filter[0], '%Y-%m-%d %H:%M:%S%z'))
|
43 |
+
dates.append(datetime.datetime.strftime(date_filter[1], '%Y-%m-%d %H:%M:%S%z'))
|
44 |
+
|
45 |
+
news_data = news_data[(news_data['updatedDate'] >= dates[0]) & (news_data['updatedDate'] <= dates[1])]
|
46 |
|
47 |
except Exception as E:
|
48 |
print(E)
|
test.ipynb
CHANGED
@@ -871,12 +871,327 @@
|
|
871 |
"print(f'Bearish prediction {test.negative_score.mean()}\\n Neutral prediction {test.neutral_score.mean()}\\n Bullish prediction {test.positive_score.mean()}')"
|
872 |
]
|
873 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
874 |
{
|
875 |
"cell_type": "code",
|
876 |
"execution_count": null,
|
877 |
"metadata": {},
|
878 |
"outputs": [],
|
879 |
-
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
880 |
}
|
881 |
],
|
882 |
"metadata": {
|
|
|
871 |
"print(f'Bearish prediction {test.negative_score.mean()}\\n Neutral prediction {test.neutral_score.mean()}\\n Bullish prediction {test.positive_score.mean()}')"
|
872 |
]
|
873 |
},
|
874 |
+
{
|
875 |
+
"cell_type": "code",
|
876 |
+
"execution_count": 24,
|
877 |
+
"metadata": {},
|
878 |
+
"outputs": [
|
879 |
+
{
|
880 |
+
"data": {
|
881 |
+
"text/html": [
|
882 |
+
"<div>\n",
|
883 |
+
"<style scoped>\n",
|
884 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
885 |
+
" vertical-align: middle;\n",
|
886 |
+
" }\n",
|
887 |
+
"\n",
|
888 |
+
" .dataframe tbody tr th {\n",
|
889 |
+
" vertical-align: top;\n",
|
890 |
+
" }\n",
|
891 |
+
"\n",
|
892 |
+
" .dataframe thead th {\n",
|
893 |
+
" text-align: right;\n",
|
894 |
+
" }\n",
|
895 |
+
"</style>\n",
|
896 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
897 |
+
" <thead>\n",
|
898 |
+
" <tr style=\"text-align: right;\">\n",
|
899 |
+
" <th></th>\n",
|
900 |
+
" <th>body</th>\n",
|
901 |
+
" <th>headline</th>\n",
|
902 |
+
" <th>updatedDate</th>\n",
|
903 |
+
" <th>topic_prediction</th>\n",
|
904 |
+
" <th>topic_verification</th>\n",
|
905 |
+
" <th>negative_score</th>\n",
|
906 |
+
" <th>neutral_score</th>\n",
|
907 |
+
" <th>positive_score</th>\n",
|
908 |
+
" <th>trend_prediction</th>\n",
|
909 |
+
" </tr>\n",
|
910 |
+
" </thead>\n",
|
911 |
+
" <tbody>\n",
|
912 |
+
" <tr>\n",
|
913 |
+
" <th>0</th>\n",
|
914 |
+
" <td>Spanish crude import volumes increased 11% ye...</td>\n",
|
915 |
+
" <td>SPAIN DATA: H1 crude imports rise 11% to 1.4 m...</td>\n",
|
916 |
+
" <td>2024-08-08 12:11:55+00:00</td>\n",
|
917 |
+
" <td>Crude Oil</td>\n",
|
918 |
+
" <td>Crude Oil</td>\n",
|
919 |
+
" <td>0.991473</td>\n",
|
920 |
+
" <td>0.005524</td>\n",
|
921 |
+
" <td>0.519264</td>\n",
|
922 |
+
" <td>Bearish</td>\n",
|
923 |
+
" </tr>\n",
|
924 |
+
" <tr>\n",
|
925 |
+
" <th>1</th>\n",
|
926 |
+
" <td>A number of refineries in China have resumed ...</td>\n",
|
927 |
+
" <td>REFINERY NEWS: Host of Chinese units back from...</td>\n",
|
928 |
+
" <td>2024-08-08 11:51:12+00:00</td>\n",
|
929 |
+
" <td>Macroeconomic & Geopolitics</td>\n",
|
930 |
+
" <td>Macroeconomic & Geopolitics</td>\n",
|
931 |
+
" <td>0.417054</td>\n",
|
932 |
+
" <td>0.845595</td>\n",
|
933 |
+
" <td>0.180685</td>\n",
|
934 |
+
" <td>Neutral</td>\n",
|
935 |
+
" </tr>\n",
|
936 |
+
" <tr>\n",
|
937 |
+
" <th>2</th>\n",
|
938 |
+
" <td>Some refineries in the Asia-Pacific region in...</td>\n",
|
939 |
+
" <td>REFINERY NEWS ROUNDUP: Mixed runs in Asia-Pacific</td>\n",
|
940 |
+
" <td>2024-08-08 11:50:48+00:00</td>\n",
|
941 |
+
" <td>Macroeconomic & Geopolitics</td>\n",
|
942 |
+
" <td>Macroeconomic & Geopolitics</td>\n",
|
943 |
+
" <td>0.268708</td>\n",
|
944 |
+
" <td>0.044504</td>\n",
|
945 |
+
" <td>0.992063</td>\n",
|
946 |
+
" <td>Bullish</td>\n",
|
947 |
+
" </tr>\n",
|
948 |
+
" <tr>\n",
|
949 |
+
" <th>3</th>\n",
|
950 |
+
" <td>The physical low sulfur (1%S) fuel oil Med-No...</td>\n",
|
951 |
+
" <td>Physical 1%S fuel oil Med-North spread hits re...</td>\n",
|
952 |
+
" <td>2024-08-08 11:28:20+00:00</td>\n",
|
953 |
+
" <td>Middle Distillates</td>\n",
|
954 |
+
" <td>Middle Distillates</td>\n",
|
955 |
+
" <td>0.951985</td>\n",
|
956 |
+
" <td>0.009613</td>\n",
|
957 |
+
" <td>0.822905</td>\n",
|
958 |
+
" <td>Bearish</td>\n",
|
959 |
+
" </tr>\n",
|
960 |
+
" <tr>\n",
|
961 |
+
" <th>4</th>\n",
|
962 |
+
" <td>Bunkering activity in India has experienced s...</td>\n",
|
963 |
+
" <td>Indian ports see Jan-July bunker, STS calls up...</td>\n",
|
964 |
+
" <td>2024-08-08 11:27:15+00:00</td>\n",
|
965 |
+
" <td>Heavy Distillates</td>\n",
|
966 |
+
" <td>Heavy Distillates</td>\n",
|
967 |
+
" <td>0.098844</td>\n",
|
968 |
+
" <td>0.059348</td>\n",
|
969 |
+
" <td>0.997325</td>\n",
|
970 |
+
" <td>Bullish</td>\n",
|
971 |
+
" </tr>\n",
|
972 |
+
" <tr>\n",
|
973 |
+
" <th>...</th>\n",
|
974 |
+
" <td>...</td>\n",
|
975 |
+
" <td>...</td>\n",
|
976 |
+
" <td>...</td>\n",
|
977 |
+
" <td>...</td>\n",
|
978 |
+
" <td>...</td>\n",
|
979 |
+
" <td>...</td>\n",
|
980 |
+
" <td>...</td>\n",
|
981 |
+
" <td>...</td>\n",
|
982 |
+
" <td>...</td>\n",
|
983 |
+
" </tr>\n",
|
984 |
+
" <tr>\n",
|
985 |
+
" <th>136</th>\n",
|
986 |
+
" <td>Saudi Aramco maintained or raised the Asia-bo...</td>\n",
|
987 |
+
" <td>Saudi Aramco maintains or raises Asia-bound Se...</td>\n",
|
988 |
+
" <td>2024-08-05 01:59:16+00:00</td>\n",
|
989 |
+
" <td>Crude Oil</td>\n",
|
990 |
+
" <td>Crude Oil</td>\n",
|
991 |
+
" <td>0.154642</td>\n",
|
992 |
+
" <td>0.032633</td>\n",
|
993 |
+
" <td>0.997273</td>\n",
|
994 |
+
" <td>Bullish</td>\n",
|
995 |
+
" </tr>\n",
|
996 |
+
" <tr>\n",
|
997 |
+
" <th>137</th>\n",
|
998 |
+
" <td>The combined open interest for front-month Si...</td>\n",
|
999 |
+
" <td>ICE front-month Singapore HSFO open interest r...</td>\n",
|
1000 |
+
" <td>2024-08-05 01:26:07+00:00</td>\n",
|
1001 |
+
" <td>Heavy Distillates</td>\n",
|
1002 |
+
" <td>Heavy Distillates</td>\n",
|
1003 |
+
" <td>0.368089</td>\n",
|
1004 |
+
" <td>0.017483</td>\n",
|
1005 |
+
" <td>0.994805</td>\n",
|
1006 |
+
" <td>Bullish</td>\n",
|
1007 |
+
" </tr>\n",
|
1008 |
+
" <tr>\n",
|
1009 |
+
" <th>138</th>\n",
|
1010 |
+
" <td>Production will be increasing “in the near fu...</td>\n",
|
1011 |
+
" <td>REFINERY NEWS: Fort Energy at Fujairah ‘remain...</td>\n",
|
1012 |
+
" <td>2024-08-05 00:45:56+00:00</td>\n",
|
1013 |
+
" <td>Macroeconomic & Geopolitics</td>\n",
|
1014 |
+
" <td>Macroeconomic & Geopolitics</td>\n",
|
1015 |
+
" <td>0.775953</td>\n",
|
1016 |
+
" <td>0.520116</td>\n",
|
1017 |
+
" <td>0.177664</td>\n",
|
1018 |
+
" <td>Bearish</td>\n",
|
1019 |
+
" </tr>\n",
|
1020 |
+
" <tr>\n",
|
1021 |
+
" <th>139</th>\n",
|
1022 |
+
" <td>Container ship Groton was attacked 125 nautic...</td>\n",
|
1023 |
+
" <td>Container ship Groton attacked near Yemen amid...</td>\n",
|
1024 |
+
" <td>2024-08-04 12:25:30+00:00</td>\n",
|
1025 |
+
" <td>Macroeconomic & Geopolitics</td>\n",
|
1026 |
+
" <td>Macroeconomic & Geopolitics</td>\n",
|
1027 |
+
" <td>0.245594</td>\n",
|
1028 |
+
" <td>0.044671</td>\n",
|
1029 |
+
" <td>0.994086</td>\n",
|
1030 |
+
" <td>Bullish</td>\n",
|
1031 |
+
" </tr>\n",
|
1032 |
+
" <tr>\n",
|
1033 |
+
" <th>140</th>\n",
|
1034 |
+
" <td>A drone strike on an oil depot in Russia’s Be...</td>\n",
|
1035 |
+
" <td>Oil depot in Russia’s Belgorod region hit by d...</td>\n",
|
1036 |
+
" <td>2024-08-04 10:14:50+00:00</td>\n",
|
1037 |
+
" <td>Macroeconomic & Geopolitics</td>\n",
|
1038 |
+
" <td>Macroeconomic & Geopolitics</td>\n",
|
1039 |
+
" <td>0.243901</td>\n",
|
1040 |
+
" <td>0.951199</td>\n",
|
1041 |
+
" <td>0.129076</td>\n",
|
1042 |
+
" <td>Neutral</td>\n",
|
1043 |
+
" </tr>\n",
|
1044 |
+
" </tbody>\n",
|
1045 |
+
"</table>\n",
|
1046 |
+
"<p>141 rows × 9 columns</p>\n",
|
1047 |
+
"</div>"
|
1048 |
+
],
|
1049 |
+
"text/plain": [
|
1050 |
+
" body \\\n",
|
1051 |
+
"0 Spanish crude import volumes increased 11% ye... \n",
|
1052 |
+
"1 A number of refineries in China have resumed ... \n",
|
1053 |
+
"2 Some refineries in the Asia-Pacific region in... \n",
|
1054 |
+
"3 The physical low sulfur (1%S) fuel oil Med-No... \n",
|
1055 |
+
"4 Bunkering activity in India has experienced s... \n",
|
1056 |
+
".. ... \n",
|
1057 |
+
"136 Saudi Aramco maintained or raised the Asia-bo... \n",
|
1058 |
+
"137 The combined open interest for front-month Si... \n",
|
1059 |
+
"138 Production will be increasing “in the near fu... \n",
|
1060 |
+
"139 Container ship Groton was attacked 125 nautic... \n",
|
1061 |
+
"140 A drone strike on an oil depot in Russia’s Be... \n",
|
1062 |
+
"\n",
|
1063 |
+
" headline \\\n",
|
1064 |
+
"0 SPAIN DATA: H1 crude imports rise 11% to 1.4 m... \n",
|
1065 |
+
"1 REFINERY NEWS: Host of Chinese units back from... \n",
|
1066 |
+
"2 REFINERY NEWS ROUNDUP: Mixed runs in Asia-Pacific \n",
|
1067 |
+
"3 Physical 1%S fuel oil Med-North spread hits re... \n",
|
1068 |
+
"4 Indian ports see Jan-July bunker, STS calls up... \n",
|
1069 |
+
".. ... \n",
|
1070 |
+
"136 Saudi Aramco maintains or raises Asia-bound Se... \n",
|
1071 |
+
"137 ICE front-month Singapore HSFO open interest r... \n",
|
1072 |
+
"138 REFINERY NEWS: Fort Energy at Fujairah ‘remain... \n",
|
1073 |
+
"139 Container ship Groton attacked near Yemen amid... \n",
|
1074 |
+
"140 Oil depot in Russia’s Belgorod region hit by d... \n",
|
1075 |
+
"\n",
|
1076 |
+
" updatedDate topic_prediction \\\n",
|
1077 |
+
"0 2024-08-08 12:11:55+00:00 Crude Oil \n",
|
1078 |
+
"1 2024-08-08 11:51:12+00:00 Macroeconomic & Geopolitics \n",
|
1079 |
+
"2 2024-08-08 11:50:48+00:00 Macroeconomic & Geopolitics \n",
|
1080 |
+
"3 2024-08-08 11:28:20+00:00 Middle Distillates \n",
|
1081 |
+
"4 2024-08-08 11:27:15+00:00 Heavy Distillates \n",
|
1082 |
+
".. ... ... \n",
|
1083 |
+
"136 2024-08-05 01:59:16+00:00 Crude Oil \n",
|
1084 |
+
"137 2024-08-05 01:26:07+00:00 Heavy Distillates \n",
|
1085 |
+
"138 2024-08-05 00:45:56+00:00 Macroeconomic & Geopolitics \n",
|
1086 |
+
"139 2024-08-04 12:25:30+00:00 Macroeconomic & Geopolitics \n",
|
1087 |
+
"140 2024-08-04 10:14:50+00:00 Macroeconomic & Geopolitics \n",
|
1088 |
+
"\n",
|
1089 |
+
" topic_verification negative_score neutral_score \\\n",
|
1090 |
+
"0 Crude Oil 0.991473 0.005524 \n",
|
1091 |
+
"1 Macroeconomic & Geopolitics 0.417054 0.845595 \n",
|
1092 |
+
"2 Macroeconomic & Geopolitics 0.268708 0.044504 \n",
|
1093 |
+
"3 Middle Distillates 0.951985 0.009613 \n",
|
1094 |
+
"4 Heavy Distillates 0.098844 0.059348 \n",
|
1095 |
+
".. ... ... ... \n",
|
1096 |
+
"136 Crude Oil 0.154642 0.032633 \n",
|
1097 |
+
"137 Heavy Distillates 0.368089 0.017483 \n",
|
1098 |
+
"138 Macroeconomic & Geopolitics 0.775953 0.520116 \n",
|
1099 |
+
"139 Macroeconomic & Geopolitics 0.245594 0.044671 \n",
|
1100 |
+
"140 Macroeconomic & Geopolitics 0.243901 0.951199 \n",
|
1101 |
+
"\n",
|
1102 |
+
" positive_score trend_prediction \n",
|
1103 |
+
"0 0.519264 Bearish \n",
|
1104 |
+
"1 0.180685 Neutral \n",
|
1105 |
+
"2 0.992063 Bullish \n",
|
1106 |
+
"3 0.822905 Bearish \n",
|
1107 |
+
"4 0.997325 Bullish \n",
|
1108 |
+
".. ... ... \n",
|
1109 |
+
"136 0.997273 Bullish \n",
|
1110 |
+
"137 0.994805 Bullish \n",
|
1111 |
+
"138 0.177664 Bearish \n",
|
1112 |
+
"139 0.994086 Bullish \n",
|
1113 |
+
"140 0.129076 Neutral \n",
|
1114 |
+
"\n",
|
1115 |
+
"[141 rows x 9 columns]"
|
1116 |
+
]
|
1117 |
+
},
|
1118 |
+
"execution_count": 24,
|
1119 |
+
"metadata": {},
|
1120 |
+
"output_type": "execute_result"
|
1121 |
+
}
|
1122 |
+
],
|
1123 |
+
"source": [
|
1124 |
+
"import pandas as pd\n",
|
1125 |
+
"import os\n",
|
1126 |
+
"\n",
|
1127 |
+
"test = pd.read_excel('evaluation.xlsx').drop(columns=['Unnamed: 0']).iloc[:, :9]\n",
|
1128 |
+
"\n",
|
1129 |
+
"test"
|
1130 |
+
]
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"cell_type": "code",
|
1134 |
+
"execution_count": 29,
|
1135 |
+
"metadata": {},
|
1136 |
+
"outputs": [],
|
1137 |
+
"source": [
|
1138 |
+
"test['updatedDate'] = pd.to_datetime(test['updatedDate'], format='%Y-%m-%d %H:%M:%S%z')"
|
1139 |
+
]
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"cell_type": "code",
|
1143 |
+
"execution_count": 30,
|
1144 |
+
"metadata": {},
|
1145 |
+
"outputs": [
|
1146 |
+
{
|
1147 |
+
"name": "stdout",
|
1148 |
+
"output_type": "stream",
|
1149 |
+
"text": [
|
1150 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
1151 |
+
"RangeIndex: 141 entries, 0 to 140\n",
|
1152 |
+
"Data columns (total 9 columns):\n",
|
1153 |
+
" # Column Non-Null Count Dtype \n",
|
1154 |
+
"--- ------ -------------- ----- \n",
|
1155 |
+
" 0 body 141 non-null object \n",
|
1156 |
+
" 1 headline 141 non-null object \n",
|
1157 |
+
" 2 updatedDate 141 non-null datetime64[ns, UTC]\n",
|
1158 |
+
" 3 topic_prediction 141 non-null object \n",
|
1159 |
+
" 4 topic_verification 141 non-null object \n",
|
1160 |
+
" 5 negative_score 141 non-null float64 \n",
|
1161 |
+
" 6 neutral_score 141 non-null float64 \n",
|
1162 |
+
" 7 positive_score 141 non-null float64 \n",
|
1163 |
+
" 8 trend_prediction 141 non-null object \n",
|
1164 |
+
"dtypes: datetime64[ns, UTC](1), float64(3), object(5)\n",
|
1165 |
+
"memory usage: 10.0+ KB\n"
|
1166 |
+
]
|
1167 |
+
}
|
1168 |
+
],
|
1169 |
+
"source": [
|
1170 |
+
"test.info()"
|
1171 |
+
]
|
1172 |
+
},
|
1173 |
{
|
1174 |
"cell_type": "code",
|
1175 |
"execution_count": null,
|
1176 |
"metadata": {},
|
1177 |
"outputs": [],
|
1178 |
+
"source": [
|
1179 |
+
"from datetime import datetime\n",
|
1180 |
+
"import numpy as np\n",
|
1181 |
+
"\n",
|
1182 |
+
"test[test['updatedDate']>= datetime.strptime('2024-08-07 00:00:00+00:00', '%Y-%m-%d %H:%M:%S%z')]"
|
1183 |
+
]
|
1184 |
+
},
|
1185 |
+
{
|
1186 |
+
"cell_type": "code",
|
1187 |
+
"execution_count": null,
|
1188 |
+
"metadata": {},
|
1189 |
+
"outputs": [],
|
1190 |
+
"source": [
|
1191 |
+
"import datetime\n",
|
1192 |
+
"\n",
|
1193 |
+
"test_date = datetime(2024, 8, 4)"
|
1194 |
+
]
|
1195 |
}
|
1196 |
],
|
1197 |
"metadata": {
|