import streamlit as st import pandas as pd from modules.data_preparation import prepare_df, plot_3dgraph import numpy as np from datetime import datetime st.title('Sentiment Analysis for Price Trend Prediction') st.header(f'Data based on News Data') st.subheader(f'{datetime.now()}') news_categories = st.multiselect("Select desired Market Movers categories", ["Macroeconomic & Geopolitics", "Crude Oil", "Light Ends", "Middle Distillates", "Heavy Distillates", "Other"], ["Macroeconomic & Geopolitics", "Crude Oil"]) date_filter = st.slider( "Date Filter", value=(datetime(2024, 8, 4), datetime(2024,8,9)), format="MM/DD/YY", ) #latest_news = prepare_df(pd.read_csv('data/results_platts_09082024_clean.csv'), news_categories) #top_news = prepare_df(pd.read_csv('data/topresults_platts_09082024_clean.csv'), news_categories) #df_news = pd.concat([latest_news, top_news], ignore_index=True).drop_duplicates(['headline']) latest_news = prepare_df(pd.read_excel('evaluation.xlsx'), news_categories, date_filter) df_news = pd.concat([latest_news], ignore_index=True).drop_duplicates(['headline']) df_mean = pd.DataFrame({ 'headline' : ['MEAN OF SELECTED NEWS'], 'negative_score' : [df_news['negative_score'].mean()], 'neutral_score' : [df_news['neutral_score'].mean()], 'positive_score' : [df_news['positive_score'].mean()], 'topic_verification' : [''] }) df_news_final = pd.concat([df_news, df_mean]) df_news_final.index = np.arange(1, len(df_news_final) + 1) st.dataframe(df_news_final.drop(columns=['body', 'headline']).iloc[:, : 7]) st.markdown('---') try: st.plotly_chart(plot_3dgraph(df_news_final), use_container_width=True) except: st.subheader('Select news categories to plot 3D graph')