Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,13 @@
|
|
1 |
-
|
2 |
import soundfile as sf
|
3 |
import torch
|
4 |
from datetime import datetime
|
5 |
import random
|
6 |
import time
|
7 |
-
from ctransformers import AutoModelForCausalLM
|
8 |
from datetime import datetime
|
9 |
import whisper
|
10 |
-
from transformers import VitsModel, AutoTokenizer
|
11 |
import torch
|
12 |
-
from transformers import
|
13 |
import torch
|
14 |
import numpy as np
|
15 |
import os
|
@@ -19,25 +17,15 @@ from timeit import default_timer as timer
|
|
19 |
import torch
|
20 |
import numpy as np
|
21 |
import pandas as pd
|
22 |
-
|
23 |
-
from model.bart import BartCaptionModel
|
24 |
-
from utils.audio_utils import load_audio, STR_CH_FIRST
|
25 |
-
from diffusers import DiffusionPipeline
|
26 |
-
|
27 |
-
from PIL import Image
|
28 |
-
|
29 |
-
def image_grid(imgs, rows, cols):
|
30 |
-
assert len(imgs) == rows*cols
|
31 |
|
32 |
-
w, h = imgs[0].size
|
33 |
-
grid = Image.new('RGB', size=(cols*w, rows*h))
|
34 |
-
grid_w, grid_h = grid.size
|
35 |
-
|
36 |
-
for i, img in enumerate(imgs):
|
37 |
-
grid.paste(img, box=(i%cols*w, i//cols*h))
|
38 |
-
return grid
|
39 |
|
|
|
|
|
|
|
|
|
40 |
|
|
|
41 |
|
42 |
def save_to_txt(text_to_save):
|
43 |
with open('prompt.txt', 'w', encoding='utf-8') as f:
|
@@ -48,253 +36,140 @@ def read_txt():
|
|
48 |
lines = f.readlines()
|
49 |
return lines
|
50 |
|
|
|
51 |
##### Chat z LLAMA ####
|
52 |
##### Chat z LLAMA ####
|
53 |
##### Chat z LLAMA ####
|
54 |
-
params = {
|
55 |
-
"max_new_tokens":512,
|
56 |
-
"stop":["<end>" ,"<|endoftext|>","[", "<user>"],
|
57 |
-
"temperature":0.7,
|
58 |
-
"top_p":0.8,
|
59 |
-
"stream":True,
|
60 |
-
"batch_size": 8}
|
61 |
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
tts_model.to("cuda")
|
69 |
-
print("TTS Loaded!")
|
70 |
-
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-pol")
|
71 |
|
72 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
|
73 |
-
torch_dtype=torch.float16,
|
74 |
-
use_safetensors=True,
|
75 |
-
variant="fp16").to("cuda")
|
76 |
-
print("DiffusionPipeline Loaded!")
|
77 |
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
with gr.Blocks() as chat_demo:
|
82 |
-
chatbot = gr.Chatbot()
|
83 |
-
|
84 |
-
|
85 |
-
clear = gr.Button("Clear")
|
86 |
audio_output = gr.Audio('temp_file.wav', label="Generated Audio (wav)", type='filepath', autoplay=False)
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
transcription = whisper_model.transcribe(audio, language="pl")
|
91 |
-
return transcription["text"]
|
92 |
-
|
93 |
-
def read_text(text):
|
94 |
-
print("Tutaj jest tekst to przeczytania!", text[-1][-1])
|
95 |
-
inputs = tokenizer(text[-1][-1], return_tensors="pt").to("cuda")
|
96 |
-
with torch.no_grad():
|
97 |
-
output = tts_model(**inputs).waveform.squeeze().cpu().numpy()
|
98 |
-
sf.write('temp_file.wav', output, tts_model.config.sampling_rate)
|
99 |
-
return 'temp_file.wav'
|
100 |
-
|
101 |
-
def user(audio_data, history):
|
102 |
-
if audio_data:
|
103 |
-
user_message = translate(audio_data)
|
104 |
-
print("USER!:")
|
105 |
-
print("", history + [[user_message, None]])
|
106 |
-
return history + [[user_message, None]]
|
107 |
-
|
108 |
-
def parse_history(hist):
|
109 |
-
history_ = ""
|
110 |
-
for q, a in hist:
|
111 |
-
history_ += f"<user>: {q } \n"
|
112 |
-
if a:
|
113 |
-
history_ += f"<assistant>: {a} \n"
|
114 |
-
return history_
|
115 |
-
|
116 |
-
def bot(history):
|
117 |
-
print(f"When: {datetime.today().strftime('%Y-%m-%d %H:%M:%S')}")
|
118 |
-
prompt = f"Jesteś AI assystentem. Odpowiadaj krótko i po polsku. {parse_history(history)}. <assistant>:"
|
119 |
-
stream = llm(prompt, **params)
|
120 |
-
history[-1][1] = ""
|
121 |
-
answer_save = ""
|
122 |
-
for character in stream:
|
123 |
-
history[-1][1] += character
|
124 |
-
answer_save += character
|
125 |
-
time.sleep(0.005)
|
126 |
-
yield history
|
127 |
-
|
128 |
-
submit_audio.click(user, [audio_input, chatbot], [chatbot], queue=False).then(bot, chatbot, chatbot).then(read_text, chatbot, audio_output)
|
129 |
-
clear.click(lambda: None, None, chatbot, queue=False)
|
130 |
-
|
131 |
-
|
132 |
-
##### Audio Gen ####
|
133 |
-
##### Audio Gen ####
|
134 |
-
##### Audio Gen ####
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
sampling_rate = model_audio_gen.audio_encoder.config.sampling_rate
|
139 |
-
frame_rate = model_audio_gen.audio_encoder.config.frame_rate
|
140 |
-
text_encoder = model_audio_gen.get_text_encoder()
|
141 |
-
|
142 |
-
def generate_audio(decade, genre, instrument, guidance_scale=8, audio_length_in_s=20, seed=0):
|
143 |
-
prompt = " ".join([decade, genre, 'track with ', instrument])
|
144 |
-
save_to_txt(prompt)
|
145 |
-
inputs = processor_audio_gen(
|
146 |
-
text=[prompt, "drums"],
|
147 |
-
padding=True,
|
148 |
-
return_tensors="pt",
|
149 |
-
).to(device)
|
150 |
-
|
151 |
-
with torch.no_grad():
|
152 |
-
encoder_outputs = text_encoder(**inputs)
|
153 |
-
|
154 |
-
max_new_tokens = int(frame_rate * audio_length_in_s)
|
155 |
-
|
156 |
-
set_seed(seed)
|
157 |
-
audio_values = model_audio_gen.generate(inputs.input_ids[0][None, :], attention_mask=inputs.attention_mask, encoder_outputs=encoder_outputs, do_sample=True, guidance_scale=guidance_scale, max_new_tokens=max_new_tokens)
|
158 |
-
sf.write('generated_audio.wav', audio_values.cpu()[0][0], 32_000)
|
159 |
-
audio_values = (audio_values.cpu().numpy() * 32767).astype(np.int16)
|
160 |
-
return (sampling_rate, audio_values)
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
audio_gen = gr.Interface(
|
165 |
-
fn=generate_audio,
|
166 |
-
inputs=[
|
167 |
-
# gr.Text(label="Negative prompt", value="drums"),
|
168 |
-
gr.Radio(["50s", " 60s", "70s", "80s", "90s"], label="decade", info=""),
|
169 |
-
gr.Radio(["classic", "rock", "pop", "metal", "jazz", "synth"], label="genre", info=""),
|
170 |
-
gr.Radio(["acoustic guitar", "electric guitar", "drums", "saxophone", "keyboard", "accordion", "fiddle"], label="instrument", info=""),
|
171 |
-
gr.Slider(1.5, 10, value=8, step=0.5, label="Guidance scale"),
|
172 |
-
gr.Slider(5, 30, value=20, step=5, label="Audio length in s"),
|
173 |
-
# gr.Slider(0, 10, value=0, step=1, label="Seed"),
|
174 |
-
],
|
175 |
-
outputs=[
|
176 |
-
gr.Audio(label="Generated Music", type="numpy"),
|
177 |
-
]#,
|
178 |
-
# examples=EXAMPLES,
|
179 |
-
)
|
180 |
-
|
181 |
-
#### Audio desc and Stable ###
|
182 |
-
#### Audio desc and Stable ###
|
183 |
-
#### Audio desc and Stable ###
|
184 |
-
|
185 |
-
if os.path.isfile("transfer.pth") == False:
|
186 |
-
torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/transfer.pth', 'transfer.pth')
|
187 |
-
torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/folk.wav', 'folk.wav')
|
188 |
-
torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/electronic.mp3', 'electronic.mp3')
|
189 |
-
torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/orchestra.wav', 'orchestra.wav')
|
190 |
-
|
191 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
192 |
-
|
193 |
-
example_list = ['folk.wav', 'electronic.mp3', 'orchestra.wav']
|
194 |
-
model = BartCaptionModel(max_length = 128)
|
195 |
-
pretrained_object = torch.load('./transfer.pth', map_location='cpu')
|
196 |
-
state_dict = pretrained_object['state_dict']
|
197 |
-
model.load_state_dict(state_dict)
|
198 |
-
if torch.cuda.is_available():
|
199 |
-
torch.cuda.set_device(device)
|
200 |
-
model = model.cuda(device)
|
201 |
-
model.eval()
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
def get_audio(audio_path, duration=10, target_sr=16000):
|
208 |
-
n_samples = int(duration * target_sr)
|
209 |
-
audio, sr = load_audio(
|
210 |
-
path= audio_path,
|
211 |
-
ch_format= STR_CH_FIRST,
|
212 |
-
sample_rate= target_sr,
|
213 |
-
downmix_to_mono= True,
|
214 |
-
)
|
215 |
-
if len(audio.shape) == 2:
|
216 |
-
audio = audio.mean(0, False) # to mono
|
217 |
-
input_size = int(n_samples)
|
218 |
-
if audio.shape[-1] < input_size: # pad sequence
|
219 |
-
pad = np.zeros(input_size)
|
220 |
-
pad[: audio.shape[-1]] = audio
|
221 |
-
audio = pad
|
222 |
-
ceil = int(audio.shape[-1] // n_samples)
|
223 |
-
audio = torch.from_numpy(np.stack(np.split(audio[:ceil * n_samples], ceil)).astype('float32'))
|
224 |
-
return audio
|
225 |
-
|
226 |
-
def captioning(audio_path):
|
227 |
-
audio_tensor = get_audio(audio_path = audio_path)
|
228 |
-
if torch.cuda.is_available():
|
229 |
-
audio_tensor = audio_tensor.to(device)
|
230 |
-
with torch.no_grad():
|
231 |
-
output = model.generate(
|
232 |
-
samples=audio_tensor,
|
233 |
-
num_beams=5,
|
234 |
-
)
|
235 |
-
inference = ""
|
236 |
-
number_of_chunks = range(audio_tensor.shape[0])
|
237 |
-
for chunk, text in zip(number_of_chunks, output):
|
238 |
-
time = f"[{chunk * 10}:00-{(chunk + 1) * 10}:00]"
|
239 |
-
inference += f"{time}\n{text} \n \n"
|
240 |
-
return inference
|
241 |
-
|
242 |
-
title = ""
|
243 |
-
description = ""
|
244 |
-
|
245 |
-
article = ""
|
246 |
-
def captioning():
|
247 |
-
audio_path = 'generated_audio.wav'
|
248 |
-
audio_tensor = get_audio(audio_path=audio_path)
|
249 |
-
|
250 |
-
if torch.cuda.is_available():
|
251 |
-
audio_tensor = audio_tensor.to(device)
|
252 |
-
|
253 |
-
with torch.no_grad():
|
254 |
-
output = model.generate(
|
255 |
-
samples=audio_tensor,
|
256 |
-
num_beams=5)
|
257 |
-
|
258 |
-
inference = ""
|
259 |
-
number_of_chunks = range(audio_tensor.shape[0])
|
260 |
-
for chunk, text in zip(number_of_chunks, output):
|
261 |
-
time = f"[{chunk * 10}:00-{(chunk + 1) * 10}:00]"
|
262 |
-
inference += f"{time}\n{text} \n \n"
|
263 |
-
|
264 |
-
prompt = read_txt()
|
265 |
-
print(prompt[0])
|
266 |
-
# Generuj obraz na podstawie tekstu
|
267 |
-
#generated_images = pipe(prompt=prompt[0]*5 + inference + prompt[0]*5).images
|
268 |
-
#image = generated_images[0]
|
269 |
-
|
270 |
-
num_images = 3
|
271 |
-
prompt = [prompt[0]*5 + inference + prompt[0]*5] * num_images
|
272 |
-
images = pipe(prompt, height=768, width=768).images
|
273 |
-
grid = image_grid(images, rows=1, cols=3)
|
274 |
-
|
275 |
-
return inference, grid
|
276 |
-
|
277 |
-
audio_desc = gr.Interface(fn=captioning,
|
278 |
-
inputs=None,
|
279 |
-
outputs=[
|
280 |
-
gr.Textbox(label="Caption generated by LP-MusicCaps Transfer Model"),
|
281 |
-
gr.Image(label="Generated Image") # Dodane wyjście dla obrazu
|
282 |
-
],
|
283 |
-
title=title,
|
284 |
-
description=description,
|
285 |
-
article=article,
|
286 |
-
cache_examples=False
|
287 |
-
)
|
288 |
-
|
289 |
-
music = gr.Video("muzyka_AI.mp4")
|
290 |
-
voice_cloning = gr.Video("voice_cloning_fraud.mp4")
|
291 |
-
|
292 |
-
##### Run Alll #######
|
293 |
-
##### Run Alll #######
|
294 |
-
##### Run Alll #######
|
295 |
|
|
|
|
|
|
|
296 |
|
297 |
-
|
|
|
298 |
|
299 |
-
|
300 |
-
demo_all.launch()
|
|
|
1 |
+
|
2 |
import soundfile as sf
|
3 |
import torch
|
4 |
from datetime import datetime
|
5 |
import random
|
6 |
import time
|
|
|
7 |
from datetime import datetime
|
8 |
import whisper
|
|
|
9 |
import torch
|
10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, VitsModel
|
11 |
import torch
|
12 |
import numpy as np
|
13 |
import os
|
|
|
17 |
import torch
|
18 |
import numpy as np
|
19 |
import pandas as pd
|
20 |
+
import whisper
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
whisper_model = whisper.load_model("medium").to("cuda")
|
24 |
+
tts_model = VitsModel.from_pretrained("facebook/mms-tts-pol")
|
25 |
+
tts_model.to("cuda")
|
26 |
+
print("TTS Loaded!")
|
27 |
|
28 |
+
tokenizer_tss = AutoTokenizer.from_pretrained("facebook/mms-tts-pol")
|
29 |
|
30 |
def save_to_txt(text_to_save):
|
31 |
with open('prompt.txt', 'w', encoding='utf-8') as f:
|
|
|
36 |
lines = f.readlines()
|
37 |
return lines
|
38 |
|
39 |
+
|
40 |
##### Chat z LLAMA ####
|
41 |
##### Chat z LLAMA ####
|
42 |
##### Chat z LLAMA ####
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
|
45 |
+
def _load_model_tokenizer():
|
46 |
+
model_id = 'tangger/Qwen-7B-Chat'
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
48 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",trust_remote_code=True, fp16=True).eval()
|
49 |
+
return model, tokenizer
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
model, tokenizer = _load_model_tokenizer()
|
53 |
+
def postprocess(self, y):
|
54 |
+
if y is None:
|
55 |
+
return []
|
56 |
+
for i, (message, response) in enumerate(y):
|
57 |
+
y[i] = (
|
58 |
+
None if message is None else mdtex2html.convert(message),
|
59 |
+
None if response is None else mdtex2html.convert(response),
|
60 |
+
)
|
61 |
+
return y
|
62 |
+
|
63 |
+
|
64 |
+
def _parse_text(text):
|
65 |
+
lines = text.split("\n")
|
66 |
+
lines = [line for line in lines if line != ""]
|
67 |
+
count = 0
|
68 |
+
for i, line in enumerate(lines):
|
69 |
+
if "```" in line:
|
70 |
+
count += 1
|
71 |
+
items = line.split("`")
|
72 |
+
if count % 2 == 1:
|
73 |
+
lines[i] = f'<pre><code class="language-{items[-1]}">'
|
74 |
+
else:
|
75 |
+
lines[i] = f"<br></code></pre>"
|
76 |
+
else:
|
77 |
+
if i > 0:
|
78 |
+
if count % 2 == 1:
|
79 |
+
line = line.replace("`", r"\`")
|
80 |
+
line = line.replace("<", "<")
|
81 |
+
line = line.replace(">", ">")
|
82 |
+
line = line.replace(" ", " ")
|
83 |
+
line = line.replace("*", "*")
|
84 |
+
line = line.replace("_", "_")
|
85 |
+
line = line.replace("-", "-")
|
86 |
+
line = line.replace(".", ".")
|
87 |
+
line = line.replace("!", "!")
|
88 |
+
line = line.replace("(", "(")
|
89 |
+
line = line.replace(")", ")")
|
90 |
+
line = line.replace("$", "$")
|
91 |
+
lines[i] = "<br>" + line
|
92 |
+
text = "".join(lines)
|
93 |
+
return text
|
94 |
+
|
95 |
+
def predict(_query, _chatbot, _task_history):
|
96 |
+
print(f"User: {_parse_text(_query)}")
|
97 |
+
_chatbot.append((_parse_text(_query), ""))
|
98 |
+
full_response = ""
|
99 |
+
|
100 |
+
for response in model.chat_stream(tokenizer, _query, history=_task_history,system = "Jesteś assystentem AI. Odpowiadaj zawsze w języku poslkim" ):
|
101 |
+
_chatbot[-1] = (_parse_text(_query), _parse_text(response))
|
102 |
+
|
103 |
+
yield _chatbot
|
104 |
+
full_response = _parse_text(response)
|
105 |
+
|
106 |
+
print(f"History: {_task_history}")
|
107 |
+
_task_history.append((_query, full_response))
|
108 |
+
print(f"Qwen-7B-Chat: {_parse_text(full_response)}")
|
109 |
+
|
110 |
+
def read_text(text):
|
111 |
+
print("___Tekst do przeczytania!")
|
112 |
+
inputs = tokenizer_tss(text, return_tensors="pt").to("cuda")
|
113 |
+
with torch.no_grad():
|
114 |
+
output = tts_model(**inputs).waveform.squeeze().cpu().numpy()
|
115 |
+
sf.write('temp_file.wav', output, tts_model.config.sampling_rate)
|
116 |
+
return 'temp_file.wav'
|
117 |
+
|
118 |
+
|
119 |
+
def update_audio(text):
|
120 |
+
return 'temp_file.wav'
|
121 |
+
|
122 |
+
def translate(audio):
|
123 |
+
print("__Wysyłam nagranie do whisper!")
|
124 |
+
transcription = whisper_model.transcribe(audio, language="pl")
|
125 |
+
return transcription["text"]
|
126 |
+
|
127 |
+
|
128 |
+
def predict(audio, _chatbot, _task_history):
|
129 |
+
# Użyj funkcji translate, aby przekształcić audio w tekst
|
130 |
+
_query = translate(audio)
|
131 |
+
|
132 |
+
print(f"____User: {_parse_text(_query)}")
|
133 |
+
_chatbot.append((_parse_text(_query), ""))
|
134 |
+
full_response = ""
|
135 |
+
|
136 |
+
for response in model.chat_stream(tokenizer,
|
137 |
+
_query,
|
138 |
+
history= _task_history,
|
139 |
+
system = "Jesteś assystentem AI. Odpowiadaj zawsze w języku polskim. Odpowiadaj krótko."):
|
140 |
+
_chatbot[-1] = (_parse_text(_query), _parse_text(response))
|
141 |
+
yield _chatbot
|
142 |
+
full_response = _parse_text(response)
|
143 |
+
|
144 |
+
print(f"____History: {_task_history}")
|
145 |
+
_task_history.append((_query, full_response))
|
146 |
+
print(f"__Qwen-7B-Chat: {_parse_text(full_response)}")
|
147 |
+
print("____full_response",full_response)
|
148 |
+
audio_file = read_text(_parse_text(full_response)) # Generowanie audio
|
149 |
+
return full_response
|
150 |
+
|
151 |
+
def regenerate(_chatbot, _task_history):
|
152 |
+
if not _task_history:
|
153 |
+
yield _chatbot
|
154 |
+
return
|
155 |
+
item = _task_history.pop(-1)
|
156 |
+
_chatbot.pop(-1)
|
157 |
+
yield from predict(item[0], _chatbot, _task_history)
|
158 |
|
159 |
with gr.Blocks() as chat_demo:
|
160 |
+
chatbot = gr.Chatbot(label='Llama Voice Chatbot', elem_classes="control-height")
|
161 |
+
query = gr.Textbox(lines=2, label='Input')
|
162 |
+
task_history = gr.State([])
|
|
|
163 |
audio_output = gr.Audio('temp_file.wav', label="Generated Audio (wav)", type='filepath', autoplay=False)
|
164 |
|
165 |
+
with gr.Row():
|
166 |
+
submit_btn = gr.Button("🚀 Wyślij tekst")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
with gr.Row():
|
169 |
+
audio_upload = gr.Audio(source="microphone", type="filepath", show_label=False)
|
170 |
+
submit_audio_btn = gr.Button("🎙️ Wyślij audio")
|
171 |
|
172 |
+
submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True)
|
173 |
+
submit_audio_btn.click(predict, [audio_upload, chatbot, task_history], [chatbot], show_progress=True).then(update_audio, chatbot, audio_output)
|
174 |
|
175 |
+
chat_demo.queue().launch(share=True)
|
|