Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
import tensorflow as tf | |
# Load the trained model | |
model = tf.keras.models.load_model('real_estate_price_prediction_model.h5') | |
# Load the original dataset to get unique categories for 'secteur' and 'city' | |
original_df = pd.read_excel("main/real_estate_price_prediction/Moroccan Real Estate Price Clean Dataset .xlsx") # Replace with your dataset path | |
# Get unique categories for 'secteur' and 'city' | |
unique_secteurs = original_df['secteur'].unique() | |
unique_cities = original_df['city'].unique() | |
# Define the column names | |
columns = ['surface', 'pieces', 'chambres', 'sdb', 'age', 'etage', 'etat_Bon état', 'etat_Nouveau', 'etat_À rénover', 'secteur', 'city'] | |
# Function to preprocess user input | |
def preprocess_input(user_input, columns, unique_secteurs, unique_cities): | |
# Define the total number of features expected by the model | |
total_features = 1015 | |
# Initialize all features to 0 | |
input_array = np.zeros((1, total_features), dtype=np.float64) | |
# Update numerical features | |
numerical_features = ['surface', 'pieces', 'chambres', 'sdb', 'age', 'etage', 'etat_Bon état', 'etat_Nouveau', 'etat_À rénover'] | |
for feature in numerical_features: | |
input_array[0, columns.index(feature)] = user_input[feature] | |
# Update categorical features | |
for feature in ['secteur', 'city']: | |
if user_input[feature] in unique_secteurs or user_input[feature] in unique_cities: | |
input_array[0, columns.index(user_input[feature])] = 1 | |
return input_array | |
# Function to predict price based on user input | |
def predict_price(user_input): | |
# Preprocess the user input | |
input_array = preprocess_input(user_input, columns, unique_secteurs, unique_cities) | |
# Make prediction using the model | |
predicted_price = model.predict(input_array) | |
return predicted_price[0][0] | |
# Gradio interface setup | |
interface = gr.Interface( | |
fn=predict_price, # The function to be called with user input | |
inputs=[ | |
gr.Slider(label=f"Enter value for 'surface'", minimum=0, maximum=500, step=1), | |
gr.Slider(label=f"Enter value for 'pieces'", minimum=0, maximum=15, step=1), | |
gr.Slider(label=f"Enter value for 'chambres'", minimum=0, maximum=10, step=1), | |
gr.Slider(label=f"Enter value for 'sdb'", minimum=0, maximum=5, step=1), | |
gr.Slider(label=f"Enter value for 'age'", minimum=0, maximum=115, step=1), | |
gr.Slider(label=f"Enter value for 'etage'", minimum=0, maximum=20, step=1), | |
gr.Slider(label=f"Enter value for 'etat_Bon état'", minimum=0, maximum=1, step=1), | |
gr.Slider(label=f"Enter value for 'etat_Nouveau'", minimum=0, maximum=1, step=1), | |
gr.Slider(label=f"Enter value for 'etat_À rénover'", minimum=0, maximum=1, step=1), | |
gr.Textbox(label=f"Enter value for 'secteur'", type="text"), | |
gr.Textbox(label=f"Enter value for 'city'", type="text") | |
], | |
outputs=gr.Textbox(label="Predicted Price:", interactive=False) | |
) | |
# Launch the Gradio interface | |
interface.launch(share=False, debug=False) | |