Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
import tensorflow as tf | |
from IPython.display import HTML | |
from tensorflow.keras.metrics import MeanSquaredError | |
# Load the trained model | |
model = tf.keras.models.load_model('real_estate_price_prediction_model.h5') | |
# Load the original dataset to get unique categories for 'secteur' and 'city' | |
original_df = pd.read_excel('Moroccan Real Estate Price Clean Dataset .xlsx') # Replace with your dataset path | |
# Get unique categories for 'secteur' and 'city' | |
unique_secteurs = original_df['secteur'].unique() | |
unique_cities = original_df['city'].unique() | |
# Define the column names | |
columns = ['surface', 'pieces', 'chambres', 'sdb', 'age', 'etage', 'etat_Bon état', 'etat_Nouveau', 'etat_À rénover', 'secteur', 'city'] | |
# Function to preprocess user input | |
def preprocess_input(user_input, columns, unique_secteurs, unique_cities): | |
# Define the total number of features expected by the model | |
total_features = 1015 | |
# Initialize all features to 0 | |
input_array = np.zeros((1, total_features), dtype=np.float64) | |
# Update numerical features | |
numerical_features = ['surface', 'pieces', 'chambres', 'sdb', 'age', 'etage', 'etat_Bon état', 'etat_À rénover'] | |
for feature in numerical_features: | |
input_array[0, columns.index(feature)] = user_input[feature] | |
# Update categorical features | |
for feature in ['secteur', 'city']: | |
if user_input[feature] in unique_secteurs or user_input[feature] in unique_cities: | |
input_array[0, columns.index(user_input[feature])] = 1 | |
return input_array | |
# Function to predict price based on user input | |
def predict_price(surface, pieces, chambres, sdb, age, etage, etat_Bon_état, etat_Nouveau, etat_À_rénover, secteur, city): | |
# Preprocess the user input | |
user_input = { | |
'surface': surface, | |
'pieces': pieces, | |
'chambres': chambres, | |
'sdb': sdb, | |
'age': age, | |
'etage': etage, | |
'etat_Bon état': etat_Bon_état, | |
'etat_Nouveau': etat_Nouveau, | |
'etat_À rénover': etat_À_rénover, | |
'secteur': secteur, | |
'city': city | |
} | |
input_array = preprocess_input(user_input, columns, unique_secteurs, unique_cities) | |
# Make prediction using the model | |
predicted_price = model.predict(input_array) | |
return f"Predicted price: {predicted_price[0][0]}" | |
# Create HTML code to display an image | |
image_html = "<img src='/content/Capture d’écran 2024-01-28 155359.jpg' style='max-width:100%;'>" | |
# Gradio interface setup | |
interface = gr.Interface( | |
fn=predict_price, # The function to be called with user input | |
inputs=[ | |
gr.Slider(label=f"Enter value for 'surface(m²)'", minimum=0, maximum=500, step=1), | |
gr.Slider(label=f"Enter value for 'pieces'", minimum=0, maximum=15, step=1), | |
gr.Slider(label=f"Enter value for 'chambres'", minimum=0, maximum=10, step=1), | |
gr.Slider(label=f"Enter value for 'sdb'", minimum=0, maximum=5, step=1), | |
gr.Slider(label=f"Enter value for 'age'", minimum=0, maximum=115, step=1), | |
gr.Slider(label=f"Enter value for 'etage'", minimum=0, maximum=20, step=1), | |
gr.Slider(label=f"Enter value for 'etat_Bon état'", minimum=0, maximum=1, step=1), | |
gr.Slider(label=f"Enter value for 'etat_Nouveau'", minimum=0, maximum=1, step=1), | |
gr.Slider(label=f"Enter value for 'etat_À rénover'", minimum=0, maximum=1, step=1), | |
gr.Textbox(label=f"Enter value for 'secteur'", type="text"), | |
gr.Textbox(label=f"Enter value for 'city'", type="text") | |
], | |
outputs=gr.Textbox(label="Predicted Price(Dh):", interactive=False), | |
title="Real Estate Price Prediction", | |
description="Enter property details to predict its price.", | |
examples=[ | |
[250, 5, 3, 2, 10, 3, 1, 0, 0, "'Secteur_A'", "'City_X'"], | |
[150, 4, 2, 1, 5, 2, 1, 0, 0, "'Secteur_B'", "'City_Y'"] | |
], | |
theme="compact", # Compact theme for a cleaner look | |
) | |
# Launch the Gradio interface | |
interface.launch(share=False, debug=False) |