import gradio as gr from langchain.document_loaders import WebBaseLoader from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=10) from langchain.llms import HuggingFaceHub model_id = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.1, "max_new_tokens":300}) from langchain.embeddings import HuggingFaceHubEmbeddings embeddings = HuggingFaceHubEmbeddings() from langchain.vectorstores import Chroma from langchain.chains import RetrievalQA from langchain.prompts import ChatPromptTemplate #web_links = ["https://www.databricks.com/","https://help.databricks.com","https://docs.databricks.com","https://kb.databricks.com/","http://docs.databricks.com/getting-started/index.html","http://docs.databricks.com/introduction/index.html","http://docs.databricks.com/getting-started/tutorials/index.html","http://docs.databricks.com/machine-learning/index.html","http://docs.databricks.com/sql/index.html"] #loader = WebBaseLoader(web_links) #documents = loader.load() db = Chroma(persist_directory="./chroma_db", embedding_function=embeddings) db.get() #texts = text_splitter.split_documents(documents) #db = Chroma.from_documents(texts, embedding_function=embeddings) retriever = db.as_retriever() global qa qa = RetrievalQA.from_chain_type(llm=model_id, chain_type="stuff", retriever=retriever, return_source_documents=True) def add_text(history, text): history = history + [(text, None)] return history, "" def bot(history): response = infer(history[-1][0]) history[-1][1] = response['result'] return history def infer(question): query = question result = qa({"query": query}) return result css=""" #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} """ title = """
Upload a .PDF from your computer, click the "Load PDF to LangChain" button,
when everything is ready, you can start asking questions about the pdf ;)