# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# JAX implementation of VQGAN from taming-transformers https://github.com/CompVis/taming-transformers

import math
from functools import partial
from typing import Tuple

import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict

from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .modeling_flax_utils import FlaxModelMixin


@flax.struct.dataclass
class FlaxDecoderOutput(BaseOutput):
    """
    Output of decoding method.

    Args:
        sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`):
            The decoded output sample from the last layer of the model.
        dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
            The `dtype` of the parameters.
    """

    sample: jnp.ndarray


@flax.struct.dataclass
class FlaxAutoencoderKLOutput(BaseOutput):
    """
    Output of AutoencoderKL encoding method.

    Args:
        latent_dist (`FlaxDiagonalGaussianDistribution`):
            Encoded outputs of `Encoder` represented as the mean and logvar of `FlaxDiagonalGaussianDistribution`.
            `FlaxDiagonalGaussianDistribution` allows for sampling latents from the distribution.
    """

    latent_dist: "FlaxDiagonalGaussianDistribution"


class FlaxUpsample2D(nn.Module):
    """
    Flax implementation of 2D Upsample layer

    Args:
        in_channels (`int`):
            Input channels
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """

    in_channels: int
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.conv = nn.Conv(
            self.in_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

    def __call__(self, hidden_states):
        batch, height, width, channels = hidden_states.shape
        hidden_states = jax.image.resize(
            hidden_states,
            shape=(batch, height * 2, width * 2, channels),
            method="nearest",
        )
        hidden_states = self.conv(hidden_states)
        return hidden_states


class FlaxDownsample2D(nn.Module):
    """
    Flax implementation of 2D Downsample layer

    Args:
        in_channels (`int`):
            Input channels
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """

    in_channels: int
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.conv = nn.Conv(
            self.in_channels,
            kernel_size=(3, 3),
            strides=(2, 2),
            padding="VALID",
            dtype=self.dtype,
        )

    def __call__(self, hidden_states):
        pad = ((0, 0), (0, 1), (0, 1), (0, 0))  # pad height and width dim
        hidden_states = jnp.pad(hidden_states, pad_width=pad)
        hidden_states = self.conv(hidden_states)
        return hidden_states


class FlaxResnetBlock2D(nn.Module):
    """
    Flax implementation of 2D Resnet Block.

    Args:
        in_channels (`int`):
            Input channels
        out_channels (`int`):
            Output channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        groups (:obj:`int`, *optional*, defaults to `32`):
            The number of groups to use for group norm.
        use_nin_shortcut (:obj:`bool`, *optional*, defaults to `None`):
            Whether to use `nin_shortcut`. This activates a new layer inside ResNet block
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """

    in_channels: int
    out_channels: int = None
    dropout: float = 0.0
    groups: int = 32
    use_nin_shortcut: bool = None
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        out_channels = self.in_channels if self.out_channels is None else self.out_channels

        self.norm1 = nn.GroupNorm(num_groups=self.groups, epsilon=1e-6)
        self.conv1 = nn.Conv(
            out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        self.norm2 = nn.GroupNorm(num_groups=self.groups, epsilon=1e-6)
        self.dropout_layer = nn.Dropout(self.dropout)
        self.conv2 = nn.Conv(
            out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut

        self.conv_shortcut = None
        if use_nin_shortcut:
            self.conv_shortcut = nn.Conv(
                out_channels,
                kernel_size=(1, 1),
                strides=(1, 1),
                padding="VALID",
                dtype=self.dtype,
            )

    def __call__(self, hidden_states, deterministic=True):
        residual = hidden_states
        hidden_states = self.norm1(hidden_states)
        hidden_states = nn.swish(hidden_states)
        hidden_states = self.conv1(hidden_states)

        hidden_states = self.norm2(hidden_states)
        hidden_states = nn.swish(hidden_states)
        hidden_states = self.dropout_layer(hidden_states, deterministic)
        hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            residual = self.conv_shortcut(residual)

        return hidden_states + residual


class FlaxAttentionBlock(nn.Module):
    r"""
    Flax Convolutional based multi-head attention block for diffusion-based VAE.

    Parameters:
        channels (:obj:`int`):
            Input channels
        num_head_channels (:obj:`int`, *optional*, defaults to `None`):
            Number of attention heads
        num_groups (:obj:`int`, *optional*, defaults to `32`):
            The number of groups to use for group norm
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`

    """

    channels: int
    num_head_channels: int = None
    num_groups: int = 32
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.num_heads = self.channels // self.num_head_channels if self.num_head_channels is not None else 1

        dense = partial(nn.Dense, self.channels, dtype=self.dtype)

        self.group_norm = nn.GroupNorm(num_groups=self.num_groups, epsilon=1e-6)
        self.query, self.key, self.value = dense(), dense(), dense()
        self.proj_attn = dense()

    def transpose_for_scores(self, projection):
        new_projection_shape = projection.shape[:-1] + (self.num_heads, -1)
        # move heads to 2nd position (B, T, H * D) -> (B, T, H, D)
        new_projection = projection.reshape(new_projection_shape)
        # (B, T, H, D) -> (B, H, T, D)
        new_projection = jnp.transpose(new_projection, (0, 2, 1, 3))
        return new_projection

    def __call__(self, hidden_states):
        residual = hidden_states
        batch, height, width, channels = hidden_states.shape

        hidden_states = self.group_norm(hidden_states)

        hidden_states = hidden_states.reshape((batch, height * width, channels))

        query = self.query(hidden_states)
        key = self.key(hidden_states)
        value = self.value(hidden_states)

        # transpose
        query = self.transpose_for_scores(query)
        key = self.transpose_for_scores(key)
        value = self.transpose_for_scores(value)

        # compute attentions
        scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))
        attn_weights = jnp.einsum("...qc,...kc->...qk", query * scale, key * scale)
        attn_weights = nn.softmax(attn_weights, axis=-1)

        # attend to values
        hidden_states = jnp.einsum("...kc,...qk->...qc", value, attn_weights)

        hidden_states = jnp.transpose(hidden_states, (0, 2, 1, 3))
        new_hidden_states_shape = hidden_states.shape[:-2] + (self.channels,)
        hidden_states = hidden_states.reshape(new_hidden_states_shape)

        hidden_states = self.proj_attn(hidden_states)
        hidden_states = hidden_states.reshape((batch, height, width, channels))
        hidden_states = hidden_states + residual
        return hidden_states


class FlaxDownEncoderBlock2D(nn.Module):
    r"""
    Flax Resnet blocks-based Encoder block for diffusion-based VAE.

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        out_channels (:obj:`int`):
            Output channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of Resnet layer block
        resnet_groups (:obj:`int`, *optional*, defaults to `32`):
            The number of groups to use for the Resnet block group norm
        add_downsample (:obj:`bool`, *optional*, defaults to `True`):
            Whether to add downsample layer
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """

    in_channels: int
    out_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    resnet_groups: int = 32
    add_downsample: bool = True
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []
        for i in range(self.num_layers):
            in_channels = self.in_channels if i == 0 else self.out_channels

            res_block = FlaxResnetBlock2D(
                in_channels=in_channels,
                out_channels=self.out_channels,
                dropout=self.dropout,
                groups=self.resnet_groups,
                dtype=self.dtype,
            )
            resnets.append(res_block)
        self.resnets = resnets

        if self.add_downsample:
            self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype)

    def __call__(self, hidden_states, deterministic=True):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, deterministic=deterministic)

        if self.add_downsample:
            hidden_states = self.downsamplers_0(hidden_states)

        return hidden_states


class FlaxUpDecoderBlock2D(nn.Module):
    r"""
    Flax Resnet blocks-based Decoder block for diffusion-based VAE.

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        out_channels (:obj:`int`):
            Output channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of Resnet layer block
        resnet_groups (:obj:`int`, *optional*, defaults to `32`):
            The number of groups to use for the Resnet block group norm
        add_upsample (:obj:`bool`, *optional*, defaults to `True`):
            Whether to add upsample layer
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """

    in_channels: int
    out_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    resnet_groups: int = 32
    add_upsample: bool = True
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []
        for i in range(self.num_layers):
            in_channels = self.in_channels if i == 0 else self.out_channels
            res_block = FlaxResnetBlock2D(
                in_channels=in_channels,
                out_channels=self.out_channels,
                dropout=self.dropout,
                groups=self.resnet_groups,
                dtype=self.dtype,
            )
            resnets.append(res_block)

        self.resnets = resnets

        if self.add_upsample:
            self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype)

    def __call__(self, hidden_states, deterministic=True):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, deterministic=deterministic)

        if self.add_upsample:
            hidden_states = self.upsamplers_0(hidden_states)

        return hidden_states


class FlaxUNetMidBlock2D(nn.Module):
    r"""
    Flax Unet Mid-Block module.

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of Resnet layer block
        resnet_groups (:obj:`int`, *optional*, defaults to `32`):
            The number of groups to use for the Resnet and Attention block group norm
        num_attention_heads (:obj:`int`, *optional*, defaults to `1`):
            Number of attention heads for each attention block
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """

    in_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    resnet_groups: int = 32
    num_attention_heads: int = 1
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnet_groups = self.resnet_groups if self.resnet_groups is not None else min(self.in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
            FlaxResnetBlock2D(
                in_channels=self.in_channels,
                out_channels=self.in_channels,
                dropout=self.dropout,
                groups=resnet_groups,
                dtype=self.dtype,
            )
        ]

        attentions = []

        for _ in range(self.num_layers):
            attn_block = FlaxAttentionBlock(
                channels=self.in_channels,
                num_head_channels=self.num_attention_heads,
                num_groups=resnet_groups,
                dtype=self.dtype,
            )
            attentions.append(attn_block)

            res_block = FlaxResnetBlock2D(
                in_channels=self.in_channels,
                out_channels=self.in_channels,
                dropout=self.dropout,
                groups=resnet_groups,
                dtype=self.dtype,
            )
            resnets.append(res_block)

        self.resnets = resnets
        self.attentions = attentions

    def __call__(self, hidden_states, deterministic=True):
        hidden_states = self.resnets[0](hidden_states, deterministic=deterministic)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            hidden_states = attn(hidden_states)
            hidden_states = resnet(hidden_states, deterministic=deterministic)

        return hidden_states


class FlaxEncoder(nn.Module):
    r"""
    Flax Implementation of VAE Encoder.

    This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
    subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
    general usage and behavior.

    Finally, this model supports inherent JAX features such as:
    - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
    - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
    - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
    - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)

    Parameters:
        in_channels (:obj:`int`, *optional*, defaults to 3):
            Input channels
        out_channels (:obj:`int`, *optional*, defaults to 3):
            Output channels
        down_block_types (:obj:`Tuple[str]`, *optional*, defaults to `(DownEncoderBlock2D)`):
            DownEncoder block type
        block_out_channels (:obj:`Tuple[str]`, *optional*, defaults to `(64,)`):
            Tuple containing the number of output channels for each block
        layers_per_block (:obj:`int`, *optional*, defaults to `2`):
            Number of Resnet layer for each block
        norm_num_groups (:obj:`int`, *optional*, defaults to `32`):
            norm num group
        act_fn (:obj:`str`, *optional*, defaults to `silu`):
            Activation function
        double_z (:obj:`bool`, *optional*, defaults to `False`):
            Whether to double the last output channels
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """

    in_channels: int = 3
    out_channels: int = 3
    down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
    block_out_channels: Tuple[int] = (64,)
    layers_per_block: int = 2
    norm_num_groups: int = 32
    act_fn: str = "silu"
    double_z: bool = False
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        block_out_channels = self.block_out_channels
        # in
        self.conv_in = nn.Conv(
            block_out_channels[0],
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        # downsampling
        down_blocks = []
        output_channel = block_out_channels[0]
        for i, _ in enumerate(self.down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = FlaxDownEncoderBlock2D(
                in_channels=input_channel,
                out_channels=output_channel,
                num_layers=self.layers_per_block,
                resnet_groups=self.norm_num_groups,
                add_downsample=not is_final_block,
                dtype=self.dtype,
            )
            down_blocks.append(down_block)
        self.down_blocks = down_blocks

        # middle
        self.mid_block = FlaxUNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_groups=self.norm_num_groups,
            num_attention_heads=None,
            dtype=self.dtype,
        )

        # end
        conv_out_channels = 2 * self.out_channels if self.double_z else self.out_channels
        self.conv_norm_out = nn.GroupNorm(num_groups=self.norm_num_groups, epsilon=1e-6)
        self.conv_out = nn.Conv(
            conv_out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

    def __call__(self, sample, deterministic: bool = True):
        # in
        sample = self.conv_in(sample)

        # downsampling
        for block in self.down_blocks:
            sample = block(sample, deterministic=deterministic)

        # middle
        sample = self.mid_block(sample, deterministic=deterministic)

        # end
        sample = self.conv_norm_out(sample)
        sample = nn.swish(sample)
        sample = self.conv_out(sample)

        return sample


class FlaxDecoder(nn.Module):
    r"""
    Flax Implementation of VAE Decoder.

    This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
    subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
    general usage and behavior.

    Finally, this model supports inherent JAX features such as:
    - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
    - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
    - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
    - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)

    Parameters:
        in_channels (:obj:`int`, *optional*, defaults to 3):
            Input channels
        out_channels (:obj:`int`, *optional*, defaults to 3):
            Output channels
        up_block_types (:obj:`Tuple[str]`, *optional*, defaults to `(UpDecoderBlock2D)`):
            UpDecoder block type
        block_out_channels (:obj:`Tuple[str]`, *optional*, defaults to `(64,)`):
            Tuple containing the number of output channels for each block
        layers_per_block (:obj:`int`, *optional*, defaults to `2`):
            Number of Resnet layer for each block
        norm_num_groups (:obj:`int`, *optional*, defaults to `32`):
            norm num group
        act_fn (:obj:`str`, *optional*, defaults to `silu`):
            Activation function
        double_z (:obj:`bool`, *optional*, defaults to `False`):
            Whether to double the last output channels
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            parameters `dtype`
    """

    in_channels: int = 3
    out_channels: int = 3
    up_block_types: Tuple[str] = ("UpDecoderBlock2D",)
    block_out_channels: int = (64,)
    layers_per_block: int = 2
    norm_num_groups: int = 32
    act_fn: str = "silu"
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        block_out_channels = self.block_out_channels

        # z to block_in
        self.conv_in = nn.Conv(
            block_out_channels[-1],
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        # middle
        self.mid_block = FlaxUNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_groups=self.norm_num_groups,
            num_attention_heads=None,
            dtype=self.dtype,
        )

        # upsampling
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        up_blocks = []
        for i, _ in enumerate(self.up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = FlaxUpDecoderBlock2D(
                in_channels=prev_output_channel,
                out_channels=output_channel,
                num_layers=self.layers_per_block + 1,
                resnet_groups=self.norm_num_groups,
                add_upsample=not is_final_block,
                dtype=self.dtype,
            )
            up_blocks.append(up_block)
            prev_output_channel = output_channel

        self.up_blocks = up_blocks

        # end
        self.conv_norm_out = nn.GroupNorm(num_groups=self.norm_num_groups, epsilon=1e-6)
        self.conv_out = nn.Conv(
            self.out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

    def __call__(self, sample, deterministic: bool = True):
        # z to block_in
        sample = self.conv_in(sample)

        # middle
        sample = self.mid_block(sample, deterministic=deterministic)

        # upsampling
        for block in self.up_blocks:
            sample = block(sample, deterministic=deterministic)

        sample = self.conv_norm_out(sample)
        sample = nn.swish(sample)
        sample = self.conv_out(sample)

        return sample


class FlaxDiagonalGaussianDistribution(object):
    def __init__(self, parameters, deterministic=False):
        # Last axis to account for channels-last
        self.mean, self.logvar = jnp.split(parameters, 2, axis=-1)
        self.logvar = jnp.clip(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = jnp.exp(0.5 * self.logvar)
        self.var = jnp.exp(self.logvar)
        if self.deterministic:
            self.var = self.std = jnp.zeros_like(self.mean)

    def sample(self, key):
        return self.mean + self.std * jax.random.normal(key, self.mean.shape)

    def kl(self, other=None):
        if self.deterministic:
            return jnp.array([0.0])

        if other is None:
            return 0.5 * jnp.sum(self.mean**2 + self.var - 1.0 - self.logvar, axis=[1, 2, 3])

        return 0.5 * jnp.sum(
            jnp.square(self.mean - other.mean) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar,
            axis=[1, 2, 3],
        )

    def nll(self, sample, axis=[1, 2, 3]):
        if self.deterministic:
            return jnp.array([0.0])

        logtwopi = jnp.log(2.0 * jnp.pi)
        return 0.5 * jnp.sum(logtwopi + self.logvar + jnp.square(sample - self.mean) / self.var, axis=axis)

    def mode(self):
        return self.mean


@flax_register_to_config
class FlaxAutoencoderKL(nn.Module, FlaxModelMixin, ConfigMixin):
    r"""
    Flax implementation of a VAE model with KL loss for decoding latent representations.

    This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it's generic methods
    implemented for all models (such as downloading or saving).

    This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
    subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matter related to its
    general usage and behavior.

    Inherent JAX features such as the following are supported:

    - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
    - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
    - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
    - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)

    Parameters:
        in_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input image.
        out_channels (`int`, *optional*, defaults to 3):
            Number of channels in the output.
        down_block_types (`Tuple[str]`, *optional*, defaults to `(DownEncoderBlock2D)`):
            Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to `(UpDecoderBlock2D)`):
            Tuple of upsample block types.
        block_out_channels (`Tuple[str]`, *optional*, defaults to `(64,)`):
            Tuple of block output channels.
        layers_per_block (`int`, *optional*, defaults to `2`):
            Number of ResNet layer for each block.
        act_fn (`str`, *optional*, defaults to `silu`):
            The activation function to use.
        latent_channels (`int`, *optional*, defaults to `4`):
            Number of channels in the latent space.
        norm_num_groups (`int`, *optional*, defaults to `32`):
            The number of groups for normalization.
        sample_size (`int`, *optional*, defaults to 32):
            Sample input size.
        scaling_factor (`float`, *optional*, defaults to 0.18215):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
        dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
            The `dtype` of the parameters.
    """

    in_channels: int = 3
    out_channels: int = 3
    down_block_types: Tuple[str] = ("DownEncoderBlock2D",)
    up_block_types: Tuple[str] = ("UpDecoderBlock2D",)
    block_out_channels: Tuple[int] = (64,)
    layers_per_block: int = 1
    act_fn: str = "silu"
    latent_channels: int = 4
    norm_num_groups: int = 32
    sample_size: int = 32
    scaling_factor: float = 0.18215
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.encoder = FlaxEncoder(
            in_channels=self.config.in_channels,
            out_channels=self.config.latent_channels,
            down_block_types=self.config.down_block_types,
            block_out_channels=self.config.block_out_channels,
            layers_per_block=self.config.layers_per_block,
            act_fn=self.config.act_fn,
            norm_num_groups=self.config.norm_num_groups,
            double_z=True,
            dtype=self.dtype,
        )
        self.decoder = FlaxDecoder(
            in_channels=self.config.latent_channels,
            out_channels=self.config.out_channels,
            up_block_types=self.config.up_block_types,
            block_out_channels=self.config.block_out_channels,
            layers_per_block=self.config.layers_per_block,
            norm_num_groups=self.config.norm_num_groups,
            act_fn=self.config.act_fn,
            dtype=self.dtype,
        )
        self.quant_conv = nn.Conv(
            2 * self.config.latent_channels,
            kernel_size=(1, 1),
            strides=(1, 1),
            padding="VALID",
            dtype=self.dtype,
        )
        self.post_quant_conv = nn.Conv(
            self.config.latent_channels,
            kernel_size=(1, 1),
            strides=(1, 1),
            padding="VALID",
            dtype=self.dtype,
        )

    def init_weights(self, rng: jax.Array) -> FrozenDict:
        # init input tensors
        sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
        sample = jnp.zeros(sample_shape, dtype=jnp.float32)

        params_rng, dropout_rng, gaussian_rng = jax.random.split(rng, 3)
        rngs = {"params": params_rng, "dropout": dropout_rng, "gaussian": gaussian_rng}

        return self.init(rngs, sample)["params"]

    def encode(self, sample, deterministic: bool = True, return_dict: bool = True):
        sample = jnp.transpose(sample, (0, 2, 3, 1))

        hidden_states = self.encoder(sample, deterministic=deterministic)
        moments = self.quant_conv(hidden_states)
        posterior = FlaxDiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return FlaxAutoencoderKLOutput(latent_dist=posterior)

    def decode(self, latents, deterministic: bool = True, return_dict: bool = True):
        if latents.shape[-1] != self.config.latent_channels:
            latents = jnp.transpose(latents, (0, 2, 3, 1))

        hidden_states = self.post_quant_conv(latents)
        hidden_states = self.decoder(hidden_states, deterministic=deterministic)

        hidden_states = jnp.transpose(hidden_states, (0, 3, 1, 2))

        if not return_dict:
            return (hidden_states,)

        return FlaxDecoderOutput(sample=hidden_states)

    def __call__(self, sample, sample_posterior=False, deterministic: bool = True, return_dict: bool = True):
        posterior = self.encode(sample, deterministic=deterministic, return_dict=return_dict)
        if sample_posterior:
            rng = self.make_rng("gaussian")
            hidden_states = posterior.latent_dist.sample(rng)
        else:
            hidden_states = posterior.latent_dist.mode()

        sample = self.decode(hidden_states, return_dict=return_dict).sample

        if not return_dict:
            return (sample,)

        return FlaxDecoderOutput(sample=sample)