Med_Summ_App / summarization_app.py
sacreemure's picture
Update summarization_app.py
ddacfba verified
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, T5ForConditionalGeneration, AutoModelForSeq2SeqLM
import streamlit as st
from summarizer import Summarizer
import nltk
nltk.download('punkt')
available_models = {
"IlyaGusev/rugpt3medium_sum_gazeta": "Russian Summarization (IlyaGusev/rugpt3medium_sum_gazeta)",
"Shahm/t5-small-german": "German Summarization (Shahm/t5-small-german)",
"Falconsai/medical_summarization": "English Summarization (Falconsai/medical_summarization)",
"sacreemure/med_t5_summ_ru":"Russian Medical Texts Summarization (sacreemure/med_t5_summ_ru)"
}
def hugging_face_summarize(article, model_name, num_sentences):
if "rugpt3medium" in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
input_ids = tokenizer(article, return_tensors='pt', max_length=400, truncation=True, padding=True)["input_ids"]
output_ids = model.generate(input_ids, max_new_tokens=300, repetition_penalty = 7.0, num_return_sequences=5, temperature = 0.7, top_k=50, early_stopping=True)[0]
summary = tokenizer.decode(output_ids, skip_special_tokens=True)
elif "medical" in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
input_ids= tokenizer(article, return_tensors='pt', max_length=504, truncation=True, padding=True)["input_ids"]
output_ids = model.generate(input_ids, max_new_tokens=500)
summary = tokenizer.decode(output_ids, skip_special_tokens=True)
elif "med_t5" in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
input_ids = tokenizer(article, return_tensors='pt', max_length=2048, truncation=True)["input_ids"]
output_ids = model.generate(input_ids, min_length=800, max_length=1000, repetition_penalty = 2.0, num_return_sequences=1, temperature = 0.7, top_k=50, early_stopping=True)[0]
summary = tokenizer.decode(output_ids, skip_special_tokens=True)
else:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, use_fast=False)
inputs = tokenizer(article, return_tensors="pt", max_length=800, truncation=True, padding=True)
output_ids = model.generate(inputs.input_ids, max_new_tokens=100, num_return_sequences=1)
summary = tokenizer.decode(output_ids[0], skip_special_tokens=True)
summary_sentences = nltk.sent_tokenize(summary)
summary = ' '.join(summary_sentences[:num_sentences])
return summary
def main():
st.title("Суммаризатор медицинских текстов")
st.write("Вы можете выбрать модель суммаризации для русского, английского или немецкого")
selected_model = st.selectbox("Выберите модель:", list(available_models.values()))
article_text = st.text_area("Введите текст:")
num_sentences = st.slider("Выберите количество предложений в суммаризированном тексте:", min_value=1, max_value=10, value=3)
if st.button("Суммаризировать"):
if article_text:
model_name = [name for name, model in available_models.items() if model == selected_model][0]
summary = hugging_face_summarize(article_text, model_name, num_sentences)
st.subheader("Сокращенный текст:")
st.write(summary)
else:
st.warning("Пожалуйста, введите текст.")
if __name__ == "__main__":
main()