import torch from transformers import AutoTokenizer, AutoModelForCausalLM, T5ForConditionalGeneration, AutoModelForSeq2SeqLM import streamlit as st from summarizer import Summarizer import nltk nltk.download('punkt') available_models = { "IlyaGusev/rugpt3medium_sum_gazeta": "Russian Summarization (IlyaGusev/rugpt3medium_sum_gazeta)", "Shahm/t5-small-german": "German Summarization (Shahm/t5-small-german)", "Falconsai/medical_summarization": "English Summarization (Falconsai/medical_summarization)", "sacreemure/med_t5_summ_ru":"Russian Medical Texts Summarization (sacreemure/med_t5_summ_ru)" } def hugging_face_summarize(article, model_name, num_sentences): if "rugpt3medium" in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_ids = tokenizer(article, return_tensors='pt', max_length=400, truncation=True, padding=True)["input_ids"] output_ids = model.generate(input_ids, max_new_tokens=300, repetition_penalty = 7.0, num_return_sequences=5, temperature = 0.7, top_k=50, early_stopping=True)[0] summary = tokenizer.decode(output_ids, skip_special_tokens=True) elif "medical" in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) input_ids= tokenizer(article, return_tensors='pt', max_length=504, truncation=True, padding=True)["input_ids"] output_ids = model.generate(input_ids, max_new_tokens=500) summary = tokenizer.decode(output_ids, skip_special_tokens=True) elif "med_t5" in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) input_ids = tokenizer(article, return_tensors='pt', max_length=2048, truncation=True)["input_ids"] output_ids = model.generate(input_ids, min_length=800, max_length=1000, repetition_penalty = 2.0, num_return_sequences=1, temperature = 0.7, top_k=50, early_stopping=True)[0] summary = tokenizer.decode(output_ids, skip_special_tokens=True) else: tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name, use_fast=False) inputs = tokenizer(article, return_tensors="pt", max_length=800, truncation=True, padding=True) output_ids = model.generate(inputs.input_ids, max_new_tokens=100, num_return_sequences=1) summary = tokenizer.decode(output_ids[0], skip_special_tokens=True) summary_sentences = nltk.sent_tokenize(summary) summary = ' '.join(summary_sentences[:num_sentences]) return summary def main(): st.title("Суммаризатор медицинских текстов") st.write("Вы можете выбрать модель суммаризации для русского, английского или немецкого") selected_model = st.selectbox("Выберите модель:", list(available_models.values())) article_text = st.text_area("Введите текст:") num_sentences = st.slider("Выберите количество предложений в суммаризированном тексте:", min_value=1, max_value=10, value=3) if st.button("Суммаризировать"): if article_text: model_name = [name for name, model in available_models.items() if model == selected_model][0] summary = hugging_face_summarize(article_text, model_name, num_sentences) st.subheader("Сокращенный текст:") st.write(summary) else: st.warning("Пожалуйста, введите текст.") if __name__ == "__main__": main()